🏠
🌡️ 📆 令和6年3月5日
エネルギー化学 戻る 進む 別窓で開く

02.エネルギーと生活-動力と電力-

山形大学  工学部  化学・バイオ工学科  🔋 C1 📛 立花和宏

🔚 エネルギー化学 Web Class syllabus 53209 📆 🕥10:30- 🕛12:00 仮想教室中示範B C1 zero zoom https://a.yamagata-u.ac.jp/amenity/~host/yz/c1/Education/EChem.asp
講義ノート

エネルギーの種類

  1 0.  29  エネルギーの種類
示強変数示量変数物質量あたり粒子あたり
🧪 化学エネルギーGJ 化学ポテンシャル 物質量〔mol アボガドロ数
NA
🔥 熱エネルギー Q 〔J
Q=TS
温度 T 〔Kエントロピー S 〔J/K気体定数 R 〔J/K・mol ボルツマン定数  kB 〔J/K
💪 力学的エネルギー E 〔J
W=pV 🖱
圧力 p 〔Pa 体積 V 〔m3理想気体のモル体積 x 〔L/mol
電気エネルギー E 〔J 🖱 電圧 V 〔V電気量 Q 〔Cファラデー定数 F 〔C/mol電気素量 e 〔C
🌟 光エネルギー E 〔J〕 =hν 振動数 ν 〔Hzプランク定数 h 〔J・s

  2 米沢暮らしの1か月の生活費(持ち家4人家族の例)
仕分 支出 備考
住居 76000
食費 90000
通信 20000
車の維持費・燃料費 50000 ガソリン代 170円/L
電気代・ガス代 25000 夏 ガス代10000円として、 30円 kWhとして、500kWh
35000
水道代 7000 夏 水道給水 356L /人日 し尿収集量 1.6L /世帯日
5000

米沢キャンパスの使用電力

  1 山形大学 米沢キャンパス の現在( 2024-3-5)の使用電力
©S.Okuyama

米沢キャンパスだけで、 1500kWもの 電力を使っています。 太陽光発電で賄えるのは、 昼間の日光があるときで、せいぜい30kW。 再生可能エネルギー の太陽光だけでは、電気が全然足りません。

スマートグリッドでは、 センサーを使って電力を計測し、インターネットの通信を使って、発電量を制御します。気候に左右されやすい再生可能エネルギーでは、余剰電力を電池に蓄えます。


米沢キャンパスの太陽光発電量

  2 山形大学の米沢キャンパス2024-3-5の太陽光発電と リチウムイオン電池
©S.Okuyama

米沢キャンパスだけで、 1500kWもの 電力を使っています。 太陽光発電で賄えるのは、 昼間の日光があるときで、せいぜい30kW。 再生可能エネルギー の太陽光だけでは、電気が全然足りません。

スマートグリッドでは、 センサーを使って電力を計測し、 インターネットの通信を使って、 発電量を制御します。 気候 に左右されやすい再生可能エネルギーでは、余剰電力を 電池 に蓄えます。

XMLでデータ交換することもできます。


ピカッとさいえんす

英語ではエナジーと言う。日本ではドイツ語のエネルギーと言う。1963年からアニメ放映された手塚治虫の「鉄腕アトム」でドイツ語の「エネルギー」が国民に定着してしまった。1992年からアニメ放映された「 美少女戦士セーラームーン」では、英語の「エナジー」が使われたが、ドイツ語を払拭するには至らなかったようだ。

✏ 平常演習

水を電気を使わらずに酸素と水素に分解するとしたら、どのような方法が考えられるか?またそのときどのような課題を解決しなければならないか?



低炭素住宅・建築物と太陽電池

  3 住宅の構成
区分 部品 材料
建物 躯体 🏞 木材、鉄骨、RC
屋根 ソーラーパネル、ガルバリウム鋼板、瓦、萱
樹脂サッシ、アルミサッシ
住宅設備 給湯器 、エアコン、 トイレ電池(ESS)、 パワコン(PCS)、 HEMS *
基礎 鉄筋コンクリート
外構 カーポート、緑地
ライフライン 水道電気電池 )、 ガス通信(ネット)

太陽エネルギー 二酸化炭素 蓄電池 ソーラーパネル 電気自動車
  4 低炭素住宅V2H

V2Hとは、 電気自動車の電池を、 住宅の電池(ESS)にリユース することです。 電気自動車電池容量は、 40kWh程度とすれば、住宅の電池10kWhの4世帯分に相当します。

しかし安全リユース するには、バッテリーのインスペクションが欠かせません。


バッテリーの電池容量とサイズ

  4  バッテリーの電池容量とサイズ
用途 平均的な電池容量/kWh
住宅 4~10 *
自家用車 ( EV) 40~60 *
スマホ 0.0012~0.0014 *

生活と電池

  5   生活と電池バッテリー
工業製品 システム 電池の種類
住宅 据え置き型電池(卒FIT)(ESS/BESS * LIB 、建物付属の蓄電池電源設備としての法定耐用年数は6年。
スマホ 内蔵 充電式電池( LIB
PC UPS LIB
自動車 駆動用 LIB ニッケル水素( モノポーラ、バイポーラ)
自動車 始動用 鉛電池(モノポーラ、バイポーラ)
リモコン 乾電池 ×2 乾電池
電動歯ブラシ 乾電池
時計 乾電池

エネルギー(電力量・ワットアワー)と仕事率(ワット)は違います! 蓄電池の電池容量は、電気エネルギ―です。

電池の値段
蓄電池システムの基礎
UPSとESS
UPSとESS

暖房・給湯と熱量

光熱費を節約したいけど、寒いのはいやですね。家庭で使われるエネルギーは、厨房、給湯、暖房、冷房、照明など。そのうち給湯と暖房が半分以上を占めます。 冬の寒い季節に、暖房で室温 T 〔K〕を上げて、ぽかぽかの生活を送りたいと願うのは今も昔も変わりません。 熱は温度の高い方から低い方へ移動します。暖かい部屋からは常に冷たい外気へ排熱されているのです。暖房費は排熱費と言っていいです。 化学(固体燃料、液体燃料、気体燃料)・電気 輸送にかかる力学的エネルギーがあります。エネルギーの場所を移動するのにも排熱が必要です。固体燃料は備蓄に便利ですが、輸送にエネルギーがかかります。


家電機器

  6 住宅 で使われる電化製品
分類 項目 注釈
給湯 エコキュート 🔥熱
暖房 🚂 エアコン(家電リサイクル法対象品) 🔥熱
厨房 🚂 冷蔵庫(家電リサイクル法対象品)
電子レンジ 🌟光
湯沸かしポット
炊飯器
照明ほか 照明器具(LED・蛍光灯・白熱電球)
テレビ(家電リサイクル法対象品)
パソコンスマホ
動力 洗濯機

家電で、生活に必須と思われているのは、冷蔵庫、洗濯機、 スマホなどです。 家庭で使われるエネルギーは、 電気が最も多く、 平均世帯あたり 400~500kWh程度となっています。 次いで、都市ガス、LPガス、灯油となっています。 冷暖房が最も多くなっています。 電気は、そのまま 備蓄ができません。今使っている電気は、今、作っている電気です。

電気機械器具は、 家庭用品品質表示法 で、 品質表示が義務付けられています。


給湯器


仕事と熱

  7 仕事と熱
仕事
エネルギー エンタルピー エントロピー
流動 慣性力 粘性力
物質移動 泳動 拡散
固体・ 粉体 慣性力 摩擦力

3 )


熱エネルギー

  5 熱エネルギー
©2022 K.Tachibana

エネルギー〔 Wh(ワットアワー) 〕=示強変数×示量変数

熱エネルギー(電力量)〔Wh〕=温度〔K〕× 熱容量〔Wh/K〕

熱エネルギー(電力量)〔Wh〕=温度〔K〕× 比熱〔Wh/kg〕×質量〔kg〕

熱容量= 4.2J/L・K * 米沢:地域区分3 最低水温:東北地方 5℃
  8 給湯器
種類 方式 エネルギー源
エコキュート ヒートポンプ 電気
電気温水器 ジュール熱 電気
エコジョーズ コンデンシングボイラー ガス
エコフィール コンデンシングボイラー 石油
エコワン ヒートポンプ/コンデンシングボイラー 電気 ガス

住宅エネルギー消費が多いのは、お風呂やキッチンの給湯と暖房です。 家電でも、冬場のエアコンです。

沸き上げ温度が約65℃~80℃ 300Lタイプ エコキュートの出湯量 温度差75 300L=300kg、水の比熱 0.0011676〔kWh/kg・K〕、 熱容量 0.35028〔kWh/K〕 電力量 26.271〔kWh〕

住宅

  9 住宅 の躯体 材料
分類 材料 工法 特徴
鉄材 (金属) 鉄鋼 軽量鉄骨
鉄鋼 重量鉄骨
🏞 木材 木材 軸組工法
木材 2×4工法 気密、 断熱、耐震性
石材 ( セラミックス 瓦、 レンガ コンクリート 瓦、 レンガ 、コンクリート

熱の移動

  10  熱の移動
形態
対流
輻射 熱エネルギーが、光エネルギーとなって真空中でも移動します。
拡散 温度勾配/拡散係数 エントロピーを最大に 拡散方程式

拡散は熱移動だけでなく イオン移動や物質移動でも起こります。


温室効果ガスと人間活動

  11 46 温室効果ガス
温室効果ガス 地球温暖化係数 原因となる人間活動
二酸化炭素 1 エネルギー アンモニア 製造、ソーダ石灰ガラス又は 鉄鋼製造ソーダ灰の製造、 エコキュート
メタン 25 稲作など
一酸化二窒素(亜酸化窒素)N2O 298 廃棄物等の焼却もしくは製品の製造 の用途への使用・廃棄物燃料の使用
HFC(R32) 675 最近の エアコン ネオキュート エコワン
HFC(R410A) 2090 古い エアコン

熱サイクルでは、冷媒を必要とします。


自動車と動力(HEV・EV・V2H・V2G)-燃費から電費へ-

  6 387 日産自動車いわき工場
© 2007 K.Sato

WLTCモードによる 燃費表示が義務付けられています。 EVの電費は、燃費に換算されます 。


  12 自動車 の構成部品
機能 区分 部品 働き
走る 動力発生装置 エンジン(ガソリン・ディーゼル)、モーター、ECU * 電池
動力伝達装置 クラッチ、変速機
走行装置 車軸、ホイール、タイヤ、フレーム
懸架装置 スプリング、ショックアブソーバ、リンク機構
曲がる 舵取り装置 ステアリング
止まる 制動装置 ブレーキ
支える 車体・その他 ボデー、外装、内装、(ガラス、ランプ、メータ)・その他
10 無機工業化学 02 エネルギー化学
気体の状態シミュレータ(工事中)

体積と圧力の関係

  7 100
©2021 K.Tachibana
ボイルの法則:圧力と体積は反比例:pV=一定
シャルルの法則:体積は温度に比例:V/T=一定
ボイル・シャルルの法則:pV/T=一定
気体の状態方程式:pV=nRT
pV=m/MRT

状態量

  13 状態量
物理量 / 単位 説明 応用例
質量 m
分率 ni
圧力 p
温度 T
体積 V
エンタルピー H
エネルギー
エントロピー S
ギブス自由エネルギー G
G=H-TS
G= G T ,p ,ni

熱力学では、物質と 性質を関連させます。 状態量は、性質状態数量的な表現です。


分率と濃度

  14 分率と濃度
物理量 単位 応用例
物質量 mol
質量分率 重量分率 重量百分率 質量% 、wt%、mass%、ppm 食塩相当量などは、重量百分率のほうがわかりやすいと思う。
体積分率 体積百分率 体積% 、vol%、ppm 気体では、 体積分率 モル分率 分圧 は同じ。 二酸化炭素濃度など。
モル分率 (濃度百分率) 相対湿度とか。
質量体積分率 (重量体積分率) 化学的酸素要求量 生物化学酸素要求量
体積モル濃度 mol/m3 mol/L 滴定とか。
重量モル濃度 mol/kg
質量/体積濃度 mol/kg
また,質量百分率(質量パーセント),体積百分率,物質量百分率のような用語は用いる べきではない(後述の計量法は例外) 4 )
溶媒蒸気圧は、ラウールの法則に従い、 ガスの溶解量はヘンリーの法則に従う。 このよう溶液の溶媒または、溶質の化学ポテンシャル μ( ミュー ) は、濃度表示法に対応して、各々次式で表される ただし、x,m,Cは、注目成分のモル分率、重量モル分率、容量モル分率を各々示す。 5 )

熱サイクル

  15 熱サイクル
向き 熱サイクルの種類 性質や特色 応用例
温度差⇒力学 カルノーサイクル 6 ) 7 ) 理論・受験(完全気体を仮定するので、計算が容易)
オットーサイクル 火花点火式式容積型 内燃機関 (燃料=ガソリン、プロパン、水素) (作動流体=排気ガス=二酸化炭素、水) 自動車(ガソリンエンジン) タクシー(プロパンガスエンジン)、水素自動車(水素エンジン)
ディーゼルサイクル 圧縮着火式容積型 内燃機関 (燃料=軽油) (作動流体=排気ガス= 二酸化炭素 、水) バス・船(ディーゼルエンジン)
ランキンサイクル 実在流体サイクル (流体=水、 冷媒 蒸気機関・ 火力発電 8 ) ・原子力発電
ブレイトンサイクル オープンサイクル:燃料=(灯油、軽油、化石燃料) クローズドサイクル:作動流体=(ヘリウム) 火力発電、複合発電 (タービンエンジン)・ジェット機(ジェットエンジン) *
アトキンソンサイクル
クラウドサイクル
スターリングサイクル 外燃機関
力学⇒温度差 逆ランキンサイクル 作動流体: 冷媒 (有機流体) ヒートポンプ * (エアコン、冷蔵庫)・冷凍機
リンデサイクル 液化

熱サイクルにはいろいろな種類があります 9 ) 。 エアコンや冷蔵庫の作動流体である冷媒は、 温室効果ガスになります。

  • 内燃機関・・・給熱、放熱過程がピストン・シリンダ機構の内側

    効率化のために燃料にアンチノック剤などを添加

  • 外燃機関・・・給熱、放熱過程がピストン・シリンダ機構の外側

    バイオマス燃料などが使える。

  • 完全気体サイクル・・・作動流体が相変化(液体⇔気体)しない
  • 実在流体サイクル・・・作動流体が相変化(液体⇔気体)する
  • オープンサイクル・・・作動流体を排気ガスとして環境中に放出

    運転時の環境への懸念

  • クローズドサイクル・・・作動流体を機構の内側で繰り返し使用

    廃棄時の環境への懸念

nRT=nFE

ファラデー定数は、電気量とモノの架け橋。96500C/molまたは、27kAh/molです。


電気量と電圧と静電容量の関係

  8 100
©K.Tachibana

理想的なコンデンサ(キャパシタ)では、電圧は電気量に比例します。 その比例計数が静電容量です。 理想的な電池では、電圧は一定です。なので静電容量は∞です。 実際の電池では、電池の起電力が、正極、負極の、活物質の残量モル数で 変化します。

電気エネルギーは電気量と電圧の積です。

ここで注意しなければならないのは、右辺のnは、電子の物質量だということだ

アボガドロ数で割って電子1個あたりに書き直したのが次の式だ。

E=eV

電流と電圧と電気抵抗の関係

  9 103
©K.Tachibana

電池から電流を取り出すと 過電圧による電圧降下が生じます。 電流に比例する電圧降下を、電池の内部抵抗と言います。

時代は 電気自動車

自動車 の燃費と電費

  16   自動車 の燃費と電費
区分 * 車種 実燃費 km/L 電費 km/kWh
HV アクア 21 7
EV テスラ 19.2 6.4
PHV/PHEV プリウスPHV
FCV

航続距離は、電費×電池のエネルギー容量です。 たとえば、電費が7km/kWhで、電池が40kWhなら、航続距離は280kmとなります。

リチウムイオン二次電池の理論エネルギー密度は、580mWh/gです。 40kWhの 電池の重量は68kg。 一方21km/Lで280km走ろうとしたら、ガソリンは13L。ガソリンの密度は0.8kg/m3なので、10.4kg。だんぜんガソリンの方が軽くなります。

トヨタコムス(coms)マイクロモビリティ。BEV。でも、充電に使う電気を、火力発電でまかなうとしたら、やっぱり 石炭を燃やし、 熱機関 で動力を得なければなりません。

1キロワットアワーで走れる距離

節電してみよう

低炭素建築物をチェックしてみよう


スマートグリッドでの情報通信の流れ

↕ 情報 通信
送配電系統管理事業者
↕ 情報 通信
電力供給事業者
↕ 情報 通信
スマートメーター
↕ 情報 通信
室内モニター (HEMS)
↕ 情報 通信
家電類・ソーラーパネル
  10 スマートグリッドでの情報通信の流れ
©K.Tachibana

米沢市の最高気温の推移

  11 米沢市の最高気温の推移
©2023 K.Tachibana, C1
気象庁のデータ 平成30年8月23日(木) 昭和51年の観測開始から史上最高の37.7℃を観測しました。 *

温室効果ガスである二酸化炭素の増加は危機的状況だ。

石炭 石油 " 産業革命 " 太平洋戦争 " 現在 165017001750180018501900195020002050600500400300200 年代 y / year 二酸化炭素濃度 C / ppm
  12 二酸化炭素濃度
©2020 K.Tachibana, SST

2024年3月5日CO2 濃度は、 推定444ppm。 この100年間で、地球大気中の二酸化炭素濃度は1.4倍になった。 前史時代の二酸化炭素濃度は、280ppmでほぼ一定だった。 石炭 を使い始めた産業革命から指数的に増加を始めた。 石油を使い始めてからは指数項が加わった。

今、地球がヤバい。 脱炭素社会 には 再生可能エネルギー の活用が必須。そのためには、 電気エネルギー 備蓄 する電池が必須なのだ。

二酸化炭素生成熱 を熱化学方程式で表すと下のようになります。

C + O2 = CO2 + 394 kJ
反応式- 441

熱エネルギー


194
©K.Tachibana

電気エネルギー

  17   電気エネルギー (電力量)
モノ 電気エネルギー/ kWh
一日あたりの 住宅 11 *
スマホ 1回充電 0.001
自動車 40
かつ丼 1

エネルギー(電力量・ワットアワー)と仕事率(ワット)は違います! 蓄電池の電池容量は、電気エネルギ―です。


発電の歴史

  18 発電の 歴史
年号 出来事
1831年(天保2年) ファラデー電磁誘導の法則
1832年(天保3年) ピクシーダイナモを発明
1881年(明治14年) 世界で初めての水力発電 *
1887年(明治20年) 日本 で初めての火力発電 *
1891年(明治24年) 日本 琵琶湖疏水の落差を利用した「蹴上水力発電所」(水路式、直流、160キロワット)
1963年(昭和38年) 黒4ダム

Example fillrule-evenodd - demonstrates fill-rule:evenodd -3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.0 Al Fe Zn Cu Li
  13 金属の イオン化傾向
©K.Tachibana

錆びにくい金属を貴金属と言います。 イオン化傾向は、金属と金属イオンの平衡反応の酸化還元電位に関係があります。 電位が卑なほど、 腐食しやすく、 還元しにくくなります。 電位が貴なほど、 腐食 しにくく、還元しやすいです。


直流と交流

直流 交流
  14  交流と直流

直流は、電流の向きと大きさが一定です。 交流は、電流の向きと大きさが時間とともに変化します。

交流はトランスで変圧できるので、エネルギーロスの少ない高圧送電に使われます。


光エネルギー

波長530nmの緑色の光ひと粒が持つエネルギーは、225.7105049531kJ/molです。 これは、2.33932449873963eVです。 定圧下の対称でない多原子分子なら6786.68338445252K相当です。

低圧水銀ランプ。 253.7 nm( UV-B ) の波長で、472KJ/mol(4.9eV) 洗浄

184.9 nm(UV-C,VUV) の波長で、647KJ/mol(6.7eV) 酸素分子がラジカルに乖離 。オゾン発生。



  19
種類 RGB HSB /HSL CMYK
概念 加法混色 光源色 色相環 通信 減法混色 物体色(表面色、透過色)
蛍光色、金属光沢を除く
表現 Red ff0000
green 00ff00
blue 0000ff
cyan 00ffff
magenta ff00ff
yellow ffff00
用途 ディスプレイ HTML、CSS、 SVG 通信 印刷 プリンター、カメラ
ジャンル エネルギー 情報 材料
図形 配色 12 無機工業化学 05 情報処理概論 色度座標 スペクトル

再生可能エネルギー

バイオマス(籾殻)発電

  15 318
バイオマス(籾殻)発電の様子

FMPカンノ(バイオファイナリー)カメラ2(有線LAN接続)です。

©T.Ito
AXIS M1004-Wの映像 7kW 籾殻コージェネレーション(発電・給湯)システム

再生可能エネルギーとして、太陽光、風力、水力、地熱、バイオマスが規定さてれています。 山形県東置賜郡高畠町に技術開発拠点をおく グリーンパワーテクノ(株)は、バイオマス発電で、資源問題に取り組んでいます。

  20   2030エネルギーミックス
電源分類 資源 2010実績 2030 目標
再生可能エネルギー 10 22
地熱 0 1.1
🧪 バイオマス 0 4.6
💪 風力 0 1.7
🌟 太陽光 0 7.0
💪 水力 10 9.2
原子力 ( ランキンサイクル 25 22
火力 65 56
🧪 LNG 29 27
🧪 石油 10 3
🧪 石炭 26 26

バイオマスは、カーボンニュートラルという考え方に基づいており、 長期的に二酸化炭素の収支に影響を与えないと考えられています。

🔷 東北電力グリーンプラザ@宮城県仙台市
  21 情報を維持するのに必要な エネルギー
種類説明
情報 100TB 動画(約120分)×1000本×100人ぐらい
2TB×40+4TB×12+600GB×17, キャッシュ用SSD
最大電力 1600W 設計最大消費電力,家庭用 電子レンジ2台分
実測電力 1600W ←設計最大消費電力(DB接続不可のため)
年間電力量
(電気エネルギー)
14025.6kWh
年間電気代 420768円 1kWhあたり30円で算出
年間排二酸化炭素 7.2792864t 東北電力の基礎排出係数0.000519tCO2/kWhより算出
ソーラーパネル面積 24㎡ 1kWあたりに必要なおおよその面積を15㎡として算出
リチウムイオン電池 15kWh 家庭用蓄電池1台分
学術情報基盤センター https://ftp.yz.yamagata-u.ac.jp/運用実績より。 通信速度は、実質1Gbps平均です。設計上の最大速度は5Gbpsです.

備忘。 7号館のパネルの面積は,忘れました.図面見て計算します. 10kW分のパネルです.7号館は,10kWのシステムが4台,並列でつながっています<パワコン4台 そのうちの1台が 学術情報基盤センター 米沢分室に送電されています.太陽光の電池は, リチウム電池15kWhです44,730,000円

西暦 y / 年消費電力 P / kW1990200020102020203010.08.06.04.02.00.0 L 555.555555555556 122.819022466918 L 416.666666666666 162.316256027897 L 555.555555555556 122.819022466918 L 416.666666666666 162.316256027897米沢キャンパス全域基幹スイッチ
.山形大学の 基幹通信機器 と 建物までの通信機器 の消費電力の年代別推移


  17 SDGs エネルギーをみんなに、そしてクリーンに

すべての人々の、安価かつ信頼できる持続可能な近代的エネルギーへのアクセスを確保する。

世界人口のおよそ4分の1が電気のない生活をしており、それ以上の人々が料理や暖房のための現代燃料を利用できない。

🔷
発展: エネルギー変換化学特論 交流インピーダンス法による電池やキャパシタの評価
次回:セルの組立―電池式の書き方と電極の呼び方―
©2024 Kazuhiro Tachibana

このマークは本説明資料に掲載している引用箇所以外の著作物について付けられたものです。




QRコード

🎄🎂🌃🕯🎉
〒992-8510 山形県米沢市城南4丁目3-16
3号館(物質化学工学科棟) 3-3301
准教授 伊藤智博
0238-26-3573

Copyright ©1996- 2024 Databese Amenity Laboratory of Virtual Research Institute,  Yamagata University All Rights Reserved.