HOME 教育状況公表 令和3年4月17日

リチウムイオン二次電池の構造

山形大学  理工学研究科(工学系)  物質化学工学専攻  仁科辰夫・立花和宏

エネルギー化学特論 Web Class syllabus 56339 4-211 C1

前回

二次電池とキャパシタ

電池は酸化剤としての正極、還元剤すなわち燃料としての負極、そして電子絶縁体としての電解液からなります。 電位の高い方を正極と呼びます、低い方を負極と呼びます。 放電しかしない、つまり反応が一方通行の一次電池の場合は、正極をカソードということもありますが、紛らわしいので正極と呼んだ方がよいでしょう。

電池というカタチを作り上げるには、まず電極というカタチを作り上げなければならない。 電極は、外部に電気を取り出す金属と反応物質が必要だ。金属自体が反応物質でない場合は、電気を取り出す金属に反応物質を接触させなければならない。 電気を取り出す金属を集電体、反応物質を活物質と言う。正極活物質は酸化力がなければならない。そんな物質は金属には見当たらない。 酸素ガスとか金属酸化物を使うことになる。金属酸化物はセラミックスであるから、そのまま成型するわけには行かない。 セラミックススラリーにして成型することになる。


電極とセル

一対の電極を備えた単位をセル(電池)と言う。セルを直列や並列につないで電気を取り出すデバイスをバッテリー(電池)と言う。 材料を配合し、集電体に固定し、電極を作成する。電極を配置し、電解液を入れてセルを組み立てる。 活物質となる材料に電子パスとイオンパスを構築する結着材や導電材を配合した材料を合材と言う。 合材は不均一混合物である。よって電池を形作る合材には多くの界面が含まれる。

実用電池のほとんどは、化学反応に預かる活物質として常温で固体の材料を使う。液体や気体の活物質を使おうとすると、持ち運びなどで不便を生じるからだ。固体内のリチウムイオンの拡散はそれほど早くないから、固体の材料の形状としては粉体か薄膜となる。電池の容量を稼ぎたいから、粉体に電子とリチウムイオンの循環系を構築して実用電池とする。電池を動物にたとえるなら、さしづめ炭素導電剤は動脈であり、電解液で膨潤した バインダーは静脈であり、集電体は肺である。


85 電池を動物に例えるなら
©Copyright Hiroyoshi Takahashi all rights reserved.

170
動物にたとえた等価回路(右:ダニエル電池、左:複合電極)
©K.Tachibana

リチウムイオン電池の構造

リチウム電池の正極は、活物質、導電助剤、バインダー、集電体からなり、そこには 機能界面 が存在します。


109
リチウムイオン二次電池の正極
©K.Tachibana
https://edu.yz.yamagata-u.ac.jp/Public/56307/56307_07.asp

108
リチウムイオン二次電池の負極
©K.Tachibana
https://edu.yz.yamagata-u.ac.jp/Public/56307/56307_07.asp

バルクと界面

電池やキャパシタのデバイスの性能の指標は電圧や電流だ。 それに対してバルク、材料の指標は、導電率や誘電率だ。 界面では、過電圧、反応抵抗、電気二重層容量などだ。 過電圧は電流密度に関係するが、ここでは界面の電流密度で、バルクの電流密度ではない。

バルクと界面

電池内部にはバルクと界面がある。どこをとっても均一な部分をバルク、バルクとバルクの境界を界面と言う。 バルクの相手が空気や真空のときの界面を表面と言う。

バルクは一般に直線性ですが、界面は非直線性のことが多い。たとえば、バルクの溶液に起因する溶液抵抗は電流に対する電圧降下の比例係数であり直線性と言えるが、界面反応は分解電圧を越えると急激に電流が流れるので非直線性と言える。


ランドルス型等価回路

実在する系を電気抵抗R、静電容量C、インダクタンスLで表現した回路を 等価回路と言う。 界面特性である反応抵抗や物性である導電率を推定するにはセルや電極の寸法が必要である。

ファラデーインピーダンスを抵抗とみなせば、 RC並列回路に直列に抵抗を入れた等価回路である。


74
電位プロファイル
©K. Tachibana
https://edu.yz.yamagata-u.ac.jp/Public/56307/_05/PotentialProfile.asp

休止時の電位プロファイル

正極と電解液、電解液と負極の間に界面電位差があります。 これは異種物質の接触による電位差で、まさに酸化還元電位です。


放電時の電位プロファイル

外部回路を通じて負荷に電流が流れると正極の電位が低くなります。 それにつれて全体の電位プロファイルが傾きます。 電位プロファイルの傾きは電場強度を表しますから、 その中にいる荷電粒子は力を受けます。 電解液の中のイオンはこの力によって動き出します。 しかしながら、電解液の中には障害物もたくさんあるので、 すぐに一定の速さになります。 この終末速度に相当するのがイオンの移動度です。 流体のモデルにおけるイオンの半径をストークス半径といい、 電解液の粘度が小さいほど早く動きます。 全体の電流はイオンの数とこの速さをかけたもので決まります。 外部の負荷の最大は短絡時なので、短絡時に流れる電流が最大値となります。


充電時の電位プロファイル

充電時には放電時と反対に電位プロファイルが傾きます。 法傳寺とは逆向きに電流が流れます。 この場合は外部回路からいくらでも高い電圧をかけることができますが、 界面電位差が過電圧を超えると電解液の電気分解を起こしてしまい、 不可逆的な変化が電池内部に起こってしまいます。 つまり二次電池の過充電は電池の劣化を引き起こすので厳禁だということになります。

次回

セラミックス材料~正極活物質と導電助材の働き~
http://c1.yz.yamagata-u.ac.jp/Education/Energy.html
エネルギー化学特論 電気化学特論
  1. エネルギーの種類と物質
  2. 電解工業と電気化学
  3. 電池の起電力と分解電圧
  4. 電気エネルギーと物質~電池の系譜~
  5. 電池の内部抵抗と過電圧
  6. 二次電池とキャパシタ
  7. リチウムイオン二次電池の構造
  8. セラミックス材料~正極活物質と導電助材の働き~
  9. 金属材料~負極活物質と集電体の働き~
  10. 有機材料~リチウム電池の電解液~
  11. 高分子材料~リチウム電池のバインダーやセパレータの働き~
  12. 化学工学とリチウム電池~分散・スラリーの作成と塗布乾燥~
  13. サイクリックボルタンメトリーによる電池やキャパシタの評価
  14. 交流インピーダンス法による電池やキャパシタの評価
  15. 電池やキャパシタのマネジメント~BMSやスマートグリッド~


QRコード
https://edu.yz.yamagata-u.ac.jp/Public/56307/56307_07.asp

SSLの仕組み

このマークはこのページで 著作権が明示されない部分について付けられたものです。

山形大学 データベースアメニティ研究所
〒992-8510 山形県米沢市城南4丁目3-16
3号館(物質化学工学科棟) 3-3301
仁科・立花・伊藤研究室 准教授 伊藤智博
0238-26-3573
http://amenity.yz.yamagata-u.ac.jp/

Copyright ©1996- 2021 Databese Amenity Laboratory of Virtual Research Institute,  Yamagata University All Rights Reserved.