電気量と電圧と静電容量の関係

100 電気量と電圧と静電容量と電気エネルギー の関係

下記の制御スライダーをドラッグしてコンデンサと電池の特性の違いをみてみましょう。

制御と結果
理想のコンデンサ::理想の電池(非直線)
電気量 Q/C 0
電圧 V / V 0
静電容量 C/F 0

  1 100
🖱 電気量と電圧と静電容量の関係
©K.Tachibana

理想的なコンデンサ(キャパシタ)では、電圧は電気量に比例します。 その比例計数が静電容量です。 理想的な電池では、電圧は一定です。なので静電容量は∞です。 実際の電池では、電池の起電力が、正極、負極の、活物質の残量モル数で 変化します。


静電容量
  2 静電容量のみの 等価回路

コンデンサでは電気量と電圧が比例しますが、電池では電気量と電圧は比例しません。理想的な電池では取り出した電気量にかかわらず電圧は一定です。

静電容量は電圧変化に対する電気量変化の割合です。グラフの接線の傾きの逆数です。仮に電圧一定の理想的な電池の静電容量を求めるならば無限大となります。 また実際の電池では、静電容量は電気量に依存して変化します。

電気量と電圧の積が電気エネルギーです。グラフの下の面積が電気エネルギーに相当します。

コンデンサ は、電圧変化dV/dtと電流dQ/dtが比例します。静電容量変化がなければ、C=(dQ/dt)/(dV/dt)=I/(dV/dt)です。

  1 回路計で測れる物理量
物理量 単位 備考
電圧 V V 乾電池開回路電圧1.65V。 乾電池 の公称電圧は1.5Vダニエル電池起電力は、1.1V 水の理論分解電圧は1.23V。
電流 I A 豆電球の電流は 0.5A。 ぽちっと光ったLEDの電流は1mA。 電流密度=電流÷電極面積
I= Q t
時間 t s
電気量 Q C Q = I t
🖱 電気エネルギー 電気量×電圧
電気抵抗 R Ω
R = V I , V = R I
静電容量 C F ( ファラッド )
C = Q V , V = 1 C I t
インダクタンス L H ( ヘンリー )
L = V I t , V = L I t
数式 電気にまつわる量
エネルギーと生活-動力と電力-

電池の内部抵抗と充放電曲線

  3 198 🖱 電池の内部抵抗とSOC- OCV曲線
©K.Tachibana

電池の内部抵抗 が大きくなると、カットオフ電圧に到達する時間が短くなり、電池の容量が小さくなります。 電池の内部抵抗 は、溶液抵抗( 抵抗過電圧)と接触抵抗からなります。 接触抵抗は、オーミックコンタクトでは、固体間接触の集中抵抗からなり、 またショットキーコンタクトでは、反応抵抗( 活性化過電圧)や皮膜抵抗となります。 SOCの推定に使われます。


103 電流と電圧の関係

Fig 電池の充放電曲線
©Copyright Kazuhiro Tachibana all rights reserved.
電池のインピーダンスと材料物性
  2 主な電気化学測定法
名称 概略 制御 測定 装置
クロノポテンショメトリー (CP 電圧電気量曲線 電池充放電曲線 過渡応答 など 電流 電圧 ( 電位 )、時刻 🚂 ガルバノスタット、データロガー
クロノアンペロメトリー 電流絞り込み曲線など 電圧 電流、時刻 🚂 ポテンショスタット 1 ) データロガー
リニアスイープボルタンメトリー (LSV) 分解電圧の測定など 電圧、掃引速度 電流 🚂 ファンクションジェネレータ、 🚂 ポテンショスタット、データロガー
サイクリックボルタンメトリー ( CV) 2 ) 電圧、掃引速度 電流 反応種の特定など
電圧電流曲線 電流 電圧 電池の内部抵抗
コンダクトメトリー 導電率 誘電率 の測定など 電圧 電流 🚂 ファンクションジェネレータ 3 ) 🚂 ポテンショスタット、データロガー
交流インピーダンス法 導電率 の測定など 電圧 周波数 電流 ファンクションジェネレータ、ポテンショスタット、データロガー、 オシロスコープ、LCRメータ * *

ガス pV

エネルギーの変換

  3  エネルギーの変換
🧪 化学 電力 💪 動力 🌟 🔥
🧪 化学 電池 ◇ 鉄砲 (火薬) ◇ 化学発光 ◇ 暖炉
電力
eV
蓄電池 電解 モーター 4 )
🔊スピーカー
◇ LED ◇ ヒーター
Q=I2R
💪動力
pV
高圧合成 ◇ 発電機
🎤マイク
◇応力発光 ヒートポンプ
pV=nRT
🌟
光合成 銀塩写真 ◇ 太陽電池 ◇蛍光 電子レンジ
🔥
RT
◇ 加熱合成 ◇ 熱電変換 熱機関
pV=nRT
◇ 白熱電球
黒体放射
01 13 エネルギー化学 q.168 15.エネルギー変換特論 0216

  4 0.  29  エネルギーの種類
kWhJ 関係式 示強性変数 示量性変数 物質量あたり
マクロ
粒子あたり
ミクロ
🧪 化学エネルギーG G=⊿H-TS 化学ポテンシャル 物質量〔mol アボガドロ数
NA
🔥 熱エネルギー 🖱
Q= TS
RT
温度 T 〔Kエントロピー S 〔J/K気体定数 R 〔J/K・mol ボルツマン定数  kB 〔J/K
💪 力学的エネルギー E 🖱 W=pV 圧力 p 〔Pa 体積 V 〔m3理想気体のモル体積 x 〔L/mol
電気エネルギー E 🖱
E=VQ
E=nFE
電圧 V 〔V電気量 Q 〔Cファラデー定数 F 〔C/mol電気素量 e 〔C
🌟 光エネルギー E E=hν 振動数 ν 〔Hzプランク定数 h 〔J・s

エネルギーは、相互に エネルギー変換できます。 エネルギーは保存則でなくなりませんが、有効な仕事として利用できるエネルギー(エクセルギー)の割合は減っていき、廃熱(アネルギー)の割合が増えていきます。 その意味で、熱エネルギーはエネルギーの廃棄物と言えます。

状態量

QRコード
https://edu.yz.yamagata-u.ac.jp/Public/52255/_02/VoltageElectricity.asp
名称: 教育用公開ウェブサービス
URL: 🔗 https://edu.yz.yamagata-u.ac.jp/
管理運用 山形大学 学術情報基盤センター

🎄🎂🌃🕯🎉
名称: サイバーキャンパス「鷹山」
URL: 🔗 http://amenity.yz.yamagata-u.ac.jp/
管理運用 山形大学 データベースアメニティ研究会
〒992-8510 山形県米沢市城南4丁目3-16

Copyright ©1996- 2024 Databese Amenity Laboratory of Virtual Research Institute,  Yamagata University All Rights Reserved.