温度とエントロピー

🚧
制御と結果
🌡温度T/K:
エントロピー J/K : 0
温度 T /K 0
0
02 エネルギーと生活-動力と電力-
ガス

温度とエントロピーの関係

  1 100
🖱 温度とエントロピーの関係
©2024 K.Tachibana * , C1 Lab.
ボイルの法則:圧力と体積は反比例:pV=一定
シャルルの法則:体積は温度に比例:V/T=一定
ボイル・シャルルの法則:pV/T=一定
p V = n R T
気体の状態方程式
気体の状態方程式:pV=nRT
pV=m/MRT

熱機関は、 熱エネルギー(温度差)と運動エネルギー(動力)との エネルギー変換 をします。

S = k B ln W
ボルツマンの式

体積と圧力の関係

  2 100
🖱 体積と圧力の関係
©2021 K.Tachibana * , C1 Lab.
ボイルの法則:圧力と体積は反比例:pV=一定
シャルルの法則:体積は温度に比例:V/T=一定
ボイル・シャルルの法則:pV/T=一定
p V = n R T
気体の状態方程式
気体の状態方程式:pV=nRT
pV=m/MRT

熱機関は、 熱エネルギー(温度差)と運動エネルギー( 動力)との エネルギー変換 をします。


熱サイクル

  1 熱サイクル
向き 熱サイクルの種類 性質や特色 応用例
温度差 力学 カルノーサイクル 1 ) 2 ) 理論・受験(完全気体を仮定するので、計算が容易)
オットーサイクル 火花点火式式容積型 内燃機関 (燃料=ガソリン、プロパン、水素) (作動流体=排気ガス=二酸化炭素、水) 自動車(ガソリンエンジン) タクシー(プロパンガスエンジン)、水素自動車(水素エンジン)
ディーゼルサイクル 圧縮着火式容積型 内燃機関 (燃料=軽油) (作動流体=排気ガス= 二酸化炭素 、水) バス・船(ディーゼルエンジン)
ランキンサイクル 実在流体サイクル (流体=水、 冷媒 蒸気機関・ 火力発電 3 ) 原子力発電
ブレイトンサイクル オープンサイクル:燃料 =(灯油、軽油、化石燃料) クローズドサイクル:作動流体=(ヘリウム) 火力発電、複合発電 (タービンエンジン)・ジェット機(ジェットエンジン) *
アトキンソンサイクル
クラウドサイクル
スターリングサイクル 外燃機関
力学 温度差 逆ランキンサイクル 作動流体: 冷媒 (有機流体) ヒートポンプ *🚂 エアコン 4 ) 、冷蔵庫)・冷凍機
リンデサイクル 5 ) 液化、酸素の製造

熱サイクルにはいろいろな種類があります 6 ) 。 エアコンや冷蔵庫の作動流体である冷媒は、 温室効果ガスになります。

p V = n R T
気体の状態方程式

  2 0.  29  エネルギーの種類
kWhJ 関係式 示強性変数 示量性変数 物質量あたり
マクロ
粒子あたり
ミクロ
🧪 化学エネルギーG G=⊿H-TS 化学ポテンシャル 物質量〔mol アボガドロ数
NA
🔥 熱エネルギー 🖱
Q= TS
RT
温度 T 〔Kエントロピー S 〔J/K気体定数 R 〔J/K・mol ボルツマン定数  kB 〔J/K
💪 力学的エネルギー  E 🖱 W= pV 圧力 p 〔Pa 体積 V 〔m3理想気体のモル体積 x 〔L/mol
電気nFE, 🖱
E=VQ
E=nFE
電圧 V 〔V 電気量 Q 〔C ファラデー定数 F 〔C/mol 電気素量 e 〔C
🌟 光エネルギー E E=hν 振動数 ν 〔Hzプランク定数 h 〔J・s

エネルギーは、相互に エネルギー変換できます。 エネルギーは保存則でなくなりませんが、有効な仕事として利用できるエネルギー(エクセルギー)の割合は減っていき、廃熱(アネルギー)の割合が増えていきます。 その意味で、熱エネルギーはエネルギーの廃棄物と言えます。

状態量

エネルギーの変換

  3  エネルギーの変換
🧪 化学 電力 💪 動力 🌟 🔥
🧪 化学 化学反応 👨‍🏫
pHセンサー 7 )
二酸化炭素センサー
湿度センサー
◇ 鉄砲 ( 火薬 👨‍🏫 化学発光 👨‍🏫 燃焼 バーナー ◇ 暖炉 ◇ 燃料
電力
eV, FE
蓄電池 電解 変電、 インバータ 👨‍🏫 モーター 8 )
🔊スピーカー
◇ LED 👨‍🏫 ヒーター 電気炉
Q=I2R
💪動力
pV
高圧合成 👨‍🏫 発電機
🎤マイク
リンク、カム ◇応力発光 👨‍🏫 ヒートポンプ
🚂 エアコン 9 )
pV=nRT
🌟
光合成 銀塩写真 👨‍🏫 太陽電池
イメージセンサー
◇蛍光 👨‍🏫 電子レンジ
🔥 RT, kB T ◇ 加熱合成 👨‍🏫 熱電変換 温度センサー 👨‍🏫 🚂 熱機関
pV=nRT
白熱電球
黒体放射

熱力学的状態量

  4 熱力学的状態量
物理量 / 単位 説明 応用例
質量 m 天秤計測 します。
物質量 n 物質量を直接計測するのは困難なので、 固体や液体は、質量を 計測 し、式量から換算します。 液体や気体は、体積を計測 します。
分率 ni
⚖️ 圧力 p,P 圧力計計測 します。
温度 T 温度計計測 します。
体積 V 液体は、液位を 計測 します。
熱量 q
比熱容量 CV CV= δq dT = ( E T ) V
エンタルピー H H=E+pV
エネルギー E,U
エントロピー S
⚖️ ギブス自由エネルギー G
G=H-TS
G= G T ,p ,ni

熱力学では、物質と 性質を関連させます。 状態量は、性質状態数量的な表現です。

p V = n R T
気体の状態方程式

QRコード
https://edu.yz.yamagata-u.ac.jp/Public/52255/_02/TempEntropy.asp
名称: 教育用公開ウェブサービス
URL: 🔗 https://edu.yz.yamagata-u.ac.jp/
管理運用 山形大学 学術情報基盤センター

🎄🎂🌃🕯🎉
名称: サイバーキャンパス「鷹山」
URL: 🔗 http://amenity.yz.yamagata-u.ac.jp/
管理運用 山形大学 データベースアメニティ研究会
〒992-8510 山形県米沢市城南4丁目3-16

Copyright ©1996- 2025 Databese Amenity Laboratory of Virtual Research Institute,  Yamagata University All Rights Reserved.