圧力と体積

🚧
制御と結果
🌡温度T/K:
体積 V/m3 0
圧力 p /Pa 0
0
02.エネルギーと生活-動力と電力-
ガス

圧力と体積の関係

  1 100
🖱 体積と圧力の関係
©2021 K.Tachibana , C1 Lab.
ボイルの法則:圧力と体積は反比例:pV=一定
シャルルの法則:体積は温度に比例:V/T=一定
ボイル・シャルルの法則:pV/T=一定
p V = n R T
気体の状態方程式:pV=nRT
pV=m/MRT

熱機関は、 熱エネルギー(温度差)と運動エネルギー(動力)との エネルギー変換 をします。


温度とエントロピーの関係

  2 100
🖱 温度とエントロピーの関係
©2024 K.Tachibana , C1 Lab.
ボイルの法則:圧力と体積は反比例:pV=一定
シャルルの法則:体積は温度に比例:V/T=一定
ボイル・シャルルの法則:pV/T=一定
p V = n R T
気体の状態方程式:pV=nRT
pV=m/MRT

熱機関は、 熱エネルギー(温度差)と運動エネルギー(動力)との エネルギー変換 をします。


エネルギーの変換

  1  エネルギーの変換
🧪 化学 電力 💪 動力 🌟 🔥
🧪 化学 電池 ◇ 鉄砲 (火薬) ◇ 化学発光 ◇ 暖炉
電力
eV
蓄電池 電解 モーター 1 )
🔊スピーカー
◇ LED ◇ ヒーター
Q=I2R
💪動力
pV
高圧合成 ◇ 発電機
🎤マイク
◇応力発光 ヒートポンプ
pV=nRT
🌟
光合成 銀塩写真 ◇ 太陽電池 ◇蛍光 電子レンジ
🔥
RT
◇ 加熱合成 ◇ 熱電変換 熱機関
pV=nRT
◇ 白熱電球
黒体放射
01 13 エネルギー化学 q.168 15.エネルギー変換特論 0216

  2 0.  29  エネルギーの種類
kWhJ 関係式 示強性変数 示量性変数 物質量あたり
マクロ
粒子あたり
ミクロ
🧪 化学エネルギーG G=⊿H-TS 化学ポテンシャル 物質量〔mol アボガドロ数
NA
🔥 熱エネルギー 🖱
Q= TS
RT
温度 T 〔Kエントロピー S 〔J/K気体定数 R 〔J/K・mol ボルツマン定数  kB 〔J/K
💪 力学的エネルギー E 🖱 W=pV 圧力 p 〔Pa 体積 V 〔m3理想気体のモル体積 x 〔L/mol
電気エネルギー E 🖱
E=VQ
E=nFE
電圧 V 〔V電気量 Q 〔Cファラデー定数 F 〔C/mol電気素量 e 〔C
🌟 光エネルギー E E=hν 振動数 ν 〔Hzプランク定数 h 〔J・s

エネルギーは、相互に エネルギー変換できます。 エネルギーは保存則でなくなりませんが、有効な仕事として利用できるエネルギー(エクセルギー)の割合は減っていき、廃熱(アネルギー)の割合が増えていきます。 その意味で、熱エネルギーはエネルギーの廃棄物と言えます。

状態量

熱力学的状態量

  3 熱力学的状態量
物理量 / 単位 説明 応用例
質量 m 天秤計測 します。
物質量 n 物質量を直接計測するのは困難なので、 固体や液体は、質量を 計測 し、式量から換算します。 液体や気体は、体積を計測 します。
分率 ni
圧力 p 圧力計計測 します。
温度 T 温度計計測 します。
体積 V 液体は、液位を 計測 します。
エンタルピー H
エネルギー
エントロピー S
ギブス自由エネルギー G
G=H-TS
G= G T ,p ,ni

熱力学では、物質と 性質を関連させます。 状態量は、性質状態数量的な表現です。

p V = n R T

参考文献


QRコード
https://edu.yz.yamagata-u.ac.jp/Public/52255/_02/PressureVolume.asp
名称: 教育用公開ウェブサービス
URL: 🔗 https://edu.yz.yamagata-u.ac.jp/
管理運用 山形大学 学術情報基盤センター

🎄🎂🌃🕯🎉
名称: サイバーキャンパス「鷹山」
URL: 🔗 http://amenity.yz.yamagata-u.ac.jp/
管理運用 山形大学 データベースアメニティ研究会
〒992-8510 山形県米沢市城南4丁目3-16

Copyright ©1996- 2024 Databese Amenity Laboratory of Virtual Research Institute,  Yamagata University All Rights Reserved.