米沢高等工業学校 が山形大学工学部になってから工学部には高分子、化学、機械、電気の学科があり、高分子化学(H)、材料(T)、応用化学(C)、化学工学(K)、機械工学(M)、精密機械(S)、電気工学(E)、電子工学(A)の専修コースに分かれていた。 そのうち化学系には応用化学系( C1 :電気化学、C2:分析化学、C3:天然物、C4:石油化学)があり化学工学系(K1:流体・電熱、K2:反応工学、K3:粉体工学、K4:プロセス制御)というように それぞれの学問体系に研究室が割り振られていた。 その後、C5:合成化学、C6:無機材料化学、C7:有機材料化学の研究室が増えた。
図書館分類法を見てみましょう。 電気化学工業の分類はあっても、 エネルギー化学の分類はありません。 図書館分類法のどの大見出しを見ても、 たいていは歴史から始まります。つまり学問は、先人から学ぶということなのです。 インターネットに知識の分類はありません。あるのは検索だけです。
この講義は、図書館分類法区分の技術・工学の電気化学工業の延長線にあり、 自然科学の物理化学や理論化学ではありません。
人材 | 要求される能力 | 学問分野 | 目的 | アウトプット |
---|---|---|---|---|
技術者(エンジニア) | モノづくりのための 応用力と構想力 |
工学部卒など 工学(エンジニアリング) |
発明(インベンション)、 技術(エンジニアリング) | 特許、実用新案、 工業製品 |
技能者(テクノロジスト) | 技能 |
工業高等専門学校など 工学(エンジニアリング)、芸術(アート) |
技術(テクノロジー) | 工芸品 |
技能者(テクニシャン) * | 技能 | 技能訓練学校など | 技能、職人技 | |
研究者(リサーチャー) | 根本原理の発見のための知識や姿勢 |
博士号取得 全般 |
発見(ディスカバー) | 論文 |
科学者(サイエンティスト) | 根本原理の発見のための知識や姿勢と、観察と実験による実証論的手技。 |
理学部卒など 自然科学 (サイエンス) |
発見(ディスカバー) | 論文 |
技術を担うもの (engineering practitioner)は、知識の応用と構想力を中核能力とするエンジニアengineer、技能を中核能力とするテクニシャン technician、両者の中間的性格をもつテクノロジストtechnologistの三つの職務に分類されます。ざっくり言えば、エンジニアは工学系の学士課程、テクノロジストは工業高等専門学校、テクニシャンは技能訓練学校の修了者です。 * STEAM教育とは Science(科学)、 Technology(技術)、Engineering(工学)、Art(芸術)、Mathematics(数学)のそれぞれの単語の頭文字をとったものです。 *
STEAM教育等の教科等横断的な学習の推進についてSTEAM教育等の教科等横断的な学習の推進について
文部科学省では、STEM(Science, Technology, Engineering, Mathematics)に加え、 芸術、 文化、生活、経済、法律、政治、 倫理等 を含めた広い範囲でAを定義し、 各教科等での学習を実社会での問題発見・解決に生かしていくための教科等横断的な学習を推進しています。
電気化学工業が電気を使って物質を作る学問だとすれば、エネルギー化学工業はエネルギーを使って物質を作る学問ということになります。 とはいっても、物質に加えるエネルギーの種類は、熱、動力、電気、光ぐらいしかありません。 とすればエネルギー化学工業は、電気化学工業に光で合成する化学を加えたぐらいのものです。 実際に人工的に光で合成された物質が、身近に大量にあるとは思えません。
西暦 | 出来事 |
---|---|
ものさし (長さ) | |
1604 | ◇ ガリレイ(伊)落体の法則を発見、地動説を発表。 |
振り子時計 ( ⏱ 時間) | |
1687 | ◇ ニュートン (英)、万有引力の法則を発見。 |
温度計 ( 温度) | |
1760 | ワット(英)、 蒸気機関🚂を発明 |
1788 | クーロン (仏)静電気に関するクーロンの法則を発見。 |
ボイルシャルルの法則 🔥⇒💪 | |
1800 | ボルタ(独)ボルタ電堆 |
1820 | アンペール(仏)、電流の発見 |
1831 | ヘンリー(米)モーターの発明。 |
1833 | ファラデー(英)電気分解の法則を発見 |
発電機 💪⇒⚡ | |
◇ 20世紀 | |
1905 | アインシュタイン(独)特殊相対性理論 |
1924 | ボーズ・アインシュタイン統計 |
1926 | シュレーディンガー(独)波動力学の確立 |
1931 | ウィルソン(英)半導体の理論 |
1940 | ジュール (英)電流の熱作用の法則を発見。 |
1948 | トランジスタ |
1960 | レーザーの製作、マイマン(米) |
1966 | 光ファイバーによる 通信、カオ(中)、ホッカム(英) |
1970 | CCDセンサーの発明、ボイル(加)、スミス(米) |
◇ 1980 | |
まずは身近な電気からですね。
米沢キャンパスだけで、 1500kWもの 電力を使っています。 太陽光発電で賄えるのは、 昼間の日光があるときで、せいぜい30kW。 再生可能エネルギー の太陽光だけでは、電気が全然足りません。
スマートグリッドでは、 センサーを使って電力を計測し、インターネットの通信を使って、発電量を制御します。気候に左右されやすい再生可能エネルギーでは、余剰電力を電池に蓄えます。
使用価値 (お金で買えない) |
交換価値 (お金で買える) |
|
---|---|---|
メリット | ||
財物 (固体、液体、気体の有体物、 電気 | ||
不動産(管理可能物) | ||
安心・安全 | 保険、 品質 | |
信頼、お金で買えない評価 | 信用、お金で買える評価、お金にできる評価、承認 | |
命、精神、身体 | 労働力、会社 | |
思想、良心、信条、感情、愛、誠実、個性 | 表現、文言、マニュアル、画一 | |
人格権、生存権、幸福追求権 | 財産権 | |
知恵、技能、ノウハウ、ノウホワイ | 知識、技術、特許 | |
文化 | 文明 | |
やりがい | 娯楽 | |
授業を受けた経験 | 技術者倫理の教科書 |
倫理観や価値観は、個人による違いもあります。 マルクスの資本論によれば、お金で買える価値を、交換価値といいます。 交換価値で考えれば、個人の損得と公益について、ある程度理論的に考えることができます。
損得にまつわる話に、あまりいい話はありませんが、 たとえば、「いくらもらったら、恋人とのデートをすっぽかす?」として、 恋人の価値を価格で見積もることができます。
もし、エネルギーの量に慣れていないなら、この機会に、まず 1kWhという量に実感を持ちましょう。
モノ | 価値 /円 | 質量 / g | 体積 / cm3 |
---|---|---|---|
( 電気 ) | 31 | - | - |
二酸化炭素 | 廃棄物 (大気放出) | 500 | 254545 |
アルミニウム ( 溶融塩電解 ) | 24 | 75 | 27 |
固体は重量(トン)で価格を決めます。そのまま重量を測ることが多いです。 液体は体積(リットル)で価格を決めますが、液位を測ると便利です。 気体は体積( ノルマル立米)で価格を決めますが、ボンベの残量などは圧力(気圧)を測ると便利です。
電気は目にも見えず触れることもできないので計器で測るしかありません。 電力量(キロワットアワー)を、モノや価格と紐づけてイメージしましょう。
ファラデー定数は、電気量とモノの架け橋。96500C/molまたは、27kAh/molです。
電気エネルギー(電力量)〔Wh〕=電圧〔V〕×
◇電気量〔
電気エネルギー〔Wh〕=電圧〔V〕×
◇電流〔
電気エネルギー〔Wh〕=電力〔
何でも数値にすると較べやすくなります。 それで、自然界にあるものを測るものさしがずいぶんと作られてきました。 収穫した作物の 目方や畑の 広さにはじまり、 時のものさし、果ては電気のものさしまで作られました。 エネルギー の考え方が生まれると、それにもものさしが作られました。 エネルギーは測ることができる 量であり、エネルギーを数値にするための 単位があります。
講義ノート目的 | 背景 | 特徴 | 例 | |
---|---|---|---|---|
物質の移動 | 輸送 | 溶かす | ||
加圧 | 💪 第一次産業革命 | つぶす、圧力釜 | ポンプ で気体を圧縮する。 🏞 アンモニア | |
熱の移動 | 加熱 | 🔥 | 温度 |
茹でる、煮る、蒸す 🏞 製鉄 1500℃ |
冷却 | 💪 第一次産業革命 | 冷ます 酸素 | ||
固体の処理 | 撹拌・混合 | 混ぜる | ||
固体と液体 液体と液体 |
溶解 | 溶かす | ||
撹拌・混合 | 混ぜる | |||
解砕・分散 3 ) | 砕く、マヨネーズ、チョコレート | |||
濾過・沈降・ 乾燥 | 干す | |||
再結晶・塩析 | ||||
気体・ 液体・固体中からある成分を取り出す | 分離・抽出分離・抽出 | 濾す | ||
蒸留・分留 | 🏞 ナフサ ガソリン ウイスキー シリコン | |||
電気を使う | 電解製造 電解・電析 | ⚡ 第二次産業革命 | 🏞 アルミニウム q.64 めっき | |
電解精錬 | ||||
電気透析 | かん水 |
化学反応を起こさせる操作すなわち反応操作(unit process)のほかに、いろいろな物理的な操作を必要とする。この物理的な操作を単位操作(unit operation)という 4 ) 5 ) 。
2024年11月21日の CO2 濃度は、 推定447ppm。 この100年間で、地球大気中の二酸化炭素の 濃度は1.4倍になった。 前史時代の二酸化炭素濃度は、280ppmでほぼ一定だった。 石炭 を使い始めた産業革命から指数的に増加を始めた。 石油を使い始めてからは指数項が加わった。
今、地球がヤバい。 脱炭素社会 には 再生可能エネルギー の活用が必須。そのためには、 電気エネルギーを 備蓄 する電池が必須なのだ。
二酸化炭素1)は、 燃焼熱 x 〔kJ/mol〕も生成熱 x 〔kJ/mol〕も同じです。 エンタルピー H 〔J〕は、生成熱 x 〔kJ/mol〕に物質量 n 〔mol〕をかけたものです。 二酸化炭素の分子量が、44 グラム毎モルで、なので体重1キログラムダイエットしようと思ったら、 9000キロジュールの排熱をしなければならないと言うことです。 成人男性の基礎代謝が男性で約1,500キロカロリー(kcal)と言われています。ダイエット計画が立ちましたか。 計算が面倒なので、単位の統一も推奨されているで、ジュールオフと言って欲しいところですが、言葉のイメージのせいか、ダイエットや食品の世界ではカロリーオフの方が一般的なので熱の仕事当量を使って換算すると8千キロカロリーです。 1キログラムダイエットするには、8千キロカロリーの排熱が必要なのです。
熱エネルギー(電力量)〔Wh〕=温度〔K〕× 熱容量〔Wh/K〕
熱エネルギー(電力量)〔Wh〕=温度〔K〕× 比熱〔Wh/kg〕×質量〔kg〕
対応する基本単位 | 定義定数の説明 | 記号 | 定義値 |
---|---|---|---|
秒 (s) | セシウム 133 原子の摂動を受けない基底状態の 超微細構造遷移 周波数 | ΔνCs | 9192631770 Hz |
メートル (m) | 真空中の光の速さ | c | 299792458 m/s |
キログラム (kg) | プランク定数 | h | 6.626 070 15 × 10−34 J s |
アンペア (A) | 電気素量 | e | 1.602 176 634 × 10−19 C | ケルビン (K) | ボルツマン定数 | k | 1.380 649 × 10−23 J/K |
モル (mol) | アボガドロ定数 | NA | 6.022 140 76 × 1023 /mol |
カンデラ (cd) | 周波数 540×1012Hz の 単色放射の視感効果度 | Kcd | 683 lm/W |
種類 | 量 | 説明 |
---|---|---|
情報 | 100TB | 動画(約120分)×1000本×100人ぐらい 2TB×40+4TB×12+600GB×17, キャッシュ用SSD |
最大電力 | 1600W | 設計最大消費電力,家庭用 〇電子レンジ2台分 |
実測電力 | 1600W | ←設計最大消費電力(DB接続不可のため) |
⚡年間電力量 (電気エネルギー) |
14025.6kWh | |
年間電気代 | 420768円 | 1kWhあたり30円で算出 |
年間排二酸化炭素 | 7.2792864t | 東北電力の基礎排出係数0.000519tCO2/kWhより算出 |
ソーラーパネル面積 | 24㎡ | 1kWあたりに必要なおおよその面積を15㎡として算出 |
リチウムイオン電池 | 15kWh | 家庭用蓄電池1台分 |
キャンパスのユーティリティとしての 学術情報基盤センターが消費する電力。
備忘。 7号館のパネルの面積は,忘れました.図面見て計算します. 10kW分のパネルです.7号館は,10kWのシステムが4台,並列でつながっています<パワコン4台 そのうちの1台が 学術情報基盤センター 米沢分室に送電されています.太陽光の電池は, リチウム電池15kWhです44,730,000円
自分あるいはダイエットが必要な人の目標値(キログラム)を決めて、排熱量をジュールで計算しなさい。
自分の1か月の使用電力はいくらか?その電力で金属を電解採取するとしたら何キログラムに相当するか?ご近所さんとかぶらないように亜鉛、コバルト、マンガン、クロムからひとつ金属を選んで具体的計算例を示し、説明しなさい。
使用電力. ・ 電流計と電圧計
水を電気を使わらずに酸素と水素に分解するとしたら、どのような方法が考えられるか?またそのときどのような課題を解決しなければならないか?
kWh、 J | 関係式 | 示強性変数 | 示量性変数 | 物質量あたり マクロ |
粒子あたり ミクロ |
---|---|---|---|---|---|
🧪 化学エネルギーG | ⊿G=⊿H-T⊿S | 化学ポテンシャル | 物質量〔mol〕 | アボガドロ数
NA |
|
🔥 熱エネルギー |
🖱
Q=
TS
RT
|
温度 T 〔K〕 | エントロピー S 〔J/K〕 | 気体定数 R 〔J/K・mol〕 | ボルツマン定数 kB 〔J/K |
💪 力学的エネルギー E | 🖱 W=pV | 圧力 p 〔Pa〕 | 体積 V 〔m3〕 | 理想気体のモル体積 x 〔L/mol〕 | |
⚡ 電気エネルギー E |
🖱
E=VQ
E=nFE
|
電圧 V 〔V〕 | 電気量 Q 〔C〕 | ファラデー定数 F 〔C/mol〕 | 電気素量 e 〔C〕 |
🌟 光エネルギー E | E=hν | 振動数 ν 〔Hz〕 | プランク定数 h 〔J・s〕 |
エネルギーは、相互に エネルギー変換できます。 エネルギーは保存則でなくなりませんが、有効な仕事として利用できるエネルギー(エクセルギー)の割合は減っていき、廃熱(アネルギー)の割合が増えていきます。 その意味で、熱エネルギーはエネルギーの廃棄物と言えます。
状態量🧪 化学 | ⚡ 電力 | 💪 動力 | 🌟 光 | 🔥 熱 | |
---|---|---|---|---|---|
🧪 化学 | 化学反応 |
👨🏫
二酸化炭素センサー
湿度センサー
|
◇ 鉄砲 (火薬) | 👨🏫 化学発光 | ◇ 暖炉 ◇ 燃料 |
⚡電力
eV, FE |
◇ 蓄電池 (電解) | 変電、 インバータ |
◇
モーター
12
)
🔊スピーカー |
◇ LED |
◇
ヒーター
Q=I2R |
💪動力
pV |
◇ 高圧合成 |
👨🏫
発電機
🎤マイク |
リンク、カム | ◇応力発光 | 👨🏫 ヒートポンプ pV=nRT |
🌟光
hν |
◇ 光合成 銀塩写真 |
👨🏫
太陽電池 イメージセンサー |
◇蛍光 | ◇ 電子レンジ | |
🔥熱
RT |
◇ 加熱合成 | 👨🏫 熱電変換 温度センサー |
👨🏫
🚂
熱機関
pV=nRT |
◇
白熱電球
( 黒体放射) |
もっとも注目される遺物が物差しの出土です。一寸が3.5センチと3.12センチの目盛りが片面ずつに刻まれており、 表が高麗尺、裏が唐尺の可能性が指摘されます。
🔷 古志田東遺跡@山形県米沢市古来、戦闘は科学技術で勝るかどうかで決着する。 科学技術は平和にも戦争にも使える二面性を持つ。 稲作に必要な鉄器の技術はそのまま武器に転用できた。 その武力を背景に大和政権は土地の有力者のうち体制側に転びそうなものを巧みに選んで利権をちらつかせて懐柔したに違いない。 稲作がもたらす米から作った酒は栗から作った酒より口当たりがよく、冬の寒さを和らげるのに役に立つだろう。 それでも生活を守る落葉広葉樹林を伐採し、苦労して開墾し、稲作に踏み切るという提案には猛反対があったろう。 とはいえ官吏は強く、人民は弱い。 米沢の民衆は稲作文化とともに階級社会を受け入れざるを得なかっただろう。 14 )
時間を長さに変換するには 振り子を使う。
大分類 | 小分類 | 使用温度範囲 |
---|---|---|
接触式 | 液体封入ガラス温度計 | |
バイメタル温度計
|
||
熱電温度計
|
||
非接触式 | 光高温計 | |
放射温度計 | 体温 |
温度 は、物質の 状態や反応速度、化学平衡と関係します。 プロセス の管理指標として重要なプロセス変数です。 プラントには対数の 温度計が使われます 16 ) 17 ) 。
温度 、 圧力 、 流量 、液位 ( 液面)、 組成 (成分、濃度) は、プロセス変量(プロセス変数)と呼ばれ、計測したり、目標値を設定して、 制御したりします。
標準電池 の電圧 E0 を抵抗線の 長さ l0 に換算し、被検電池の電圧の抵抗線の 長さ l との比から、被検電池の電圧 E を 測定 します。
米沢高等工業学校本館の 電気・通信科展示室(教室)に 電位差計があります。
電圧を長さに換算してものさしで測る電位差計について調べてみよう。
国際単位系. エネルギー化学 ・ 長さ・質量・時間・温度からエネルギーの概念へ-量の歴史-
量とは何だろうか。 「長さ」、「 温度」、「化学成分の 濃度」は、すべて量である。
……中略……「量」という用語は、具体性のレベルが異なるいくつかの概念を表すことがある。例えば (1)長さ(2)円の直径(3)ある金属シリンダの直径は、すべて長さの次元を持つ量であるが、具体性のレベルが異なる。 実際の測定の対象となるのは、(3)のように具体化され特定の値を持つ量である。
「 数値× 単位 」で表現できる量は、一般に 物理量といわれる。すべての量をこのように表現できると都合が良いのだが、有用な量の中には必ずしも、それが可能でない量もある。例えば、 金属材料の「硬さ」や 固体表面の「表面粗さ」は、そのような例である。このような量に対しては、それを測定する方法を十分に厳密に定義することによって、数値を使って表現できるようにしている。このように、測定方法の規約によって定義される量を工業量という。
計量管理の基礎と応用 .より 19 )
基本量 | SI基本単位 | |||
---|---|---|---|---|
名称 | 記号 | 定義 | ||
📏 長さ | メートル | m | 真空中の光の速さc を単位 m s-1で表したときに、 その数値を299 792 458と定めることによって定義される。 ここで、秒は セシウム 周波数∆νCsによって定義される | |
💪⚖ 質量 | キログラム | kg | プランク定数 hを単位J s(kg m2 s−1 に等しい)で表したときに、その数値を6.626 070 15 × 10−34 と定めることによって定義される。ここで、メートルおよび秒は光の速さc および セシウム周波数∆νCs に関連して定義される。 | |
⏱ 時間 | 秒 | s | 秒は、 セシウム 133 の原子の基底状態の二つの超微細構造準位の間の遷移に対応する放射の周期の9 192 631 770 倍の継続時間である | |
⚡ 電流 | アンペア | A | 電気素量 e を単位 C(A s に等しい)で表したときに、 その数値を 1.602 176 634 × 10-19 と定めることによって定義される。ここで、秒は ∆νCs によって定義される。 | |
🔥 🌡 温度 | ケルビン | K | ボルツマン定数 kを単位J K-1(kg m2 s-2 K-1に等しい)で表わしたときに、その数値を1.380 649×10-23と定めることによって定義される | |
🌟 光度 | カンデラ | cd | 周波数540 × 1012 Hzの単色放射の視感効果度Kcdを683 lm W -1と定めることにより定義される。 | |
🧪 物質量 | モル | mol | モル(記号は mol)は、物質量のSI単位であり、1モルには、厳密に6.022 140 76 × 1023 の要素粒子が含まれる。 この数は、アボガドロ定数 NA を単位 mol–1 で表したときの数値であり、アボガドロ数と呼ばれる。系の物質量(記号は n)は、特定された要素粒子の数の尺度である。要素粒子は、 原子、 分子、イオン、電子、その他の粒子、あるいは、粒子の集合体のいずれであってもよい。 |
物理量は、長さ 20 ) 、 電流 21 ) などの 基本単位で組み立てられます。
ISQの7つの基本料に対応して、SIには7つの基本単位が定められています 22 ) 23 ) 24 ) 。
標準物質や実量器で校正されます。
「あなたは私より身長 x 〔m〕が高いですね」
比べることができる身長 x 〔m〕や体重 x 〔kg〕を量と言います。単位を決めることで量を数で表せます。数を数字で表した数値にはかならず誤差が含まれます。デジタル表示は数字で直読できる便利さがありますが、誤差まで読み取る危険があります。
「今日は、寒いですね」
といってもどれくらいかわかりません。でも棒温度計の赤く着色された灯油の長さを見れば、どれくらい寒いかわかります。温度という量が、長さという量に変換されたのです。このような変換をアナログ変換と言います。
アナログ量はたしかに数なので、方眼紙に書き取ることはできますが、言葉で話したり、文字で書いたりすることができません。数を数字で表すと便利です。数字に変換することをデジタル変換と言います。
数を数字で表した数値にはかならず誤差が含まれます。デジタル表示は数字で直読できる便利さがありますが、誤差まで読み取る危険があります。
数値 | 区分 | 細分 | 説明 |
---|---|---|---|
測定値 | 系統誤差 | 反復測定において、一定のままであるか、または予測可能な変化をする測定誤差の成分。 | |
機械的誤差 | ノギス、天秤、メスシリンダーなど測定器の精度や 精確さ( 確度) による誤差 | ||
個人的誤差 | 測定者のくせによる誤差 | ||
理論的誤差 | 理論の省略などによる誤差 | ||
偶然誤差
random error |
反復測定において、予測が不可能な変化をする測定誤差の成分。 誤差論(確率・統計)の対象 | ||
計算値 | 計算誤差 | AD変換 、 DA変換、丸め誤差や計算精度による誤差、 数値 データの格納方式による誤差。 | |
設計値 |
公差
tolerance |
製品の仕様図や設計図で、基準値から許容される値。 方向が指定されてより具体的なものは許容値と呼ばれる。 |
誤差(error)は、測定値から真値を引いた値です。特に、測定誤差と言うこともあります。 25 )
誤差が検査や測定にかかるのに対して、 公差は設計にかかります。 不適合を出さない設計をするには、研究開発段階から、公差の設計が大切です。
化学で使われる量・単位・記号 26 ) 誤差とノイズ 27 )一般に、測定値は真の値ではなく近似的は値である。測定値と真の値との差を誤差と言う。
誤差=測定値-真の値
工業技術基礎より
定義値には誤差はありません。有効数字無限大です。
こういう意味のある 数字 を有効数字というのであるが、有効数字が三桁というのは、例えば56.2とか7.31とかいう数である。数字で書いて見ると三桁位のものは極めて簡単な数で、小学校の三年生位ならば楽々と取り扱える程度のものである。ところが物理の方では三桁目まで精確な測定値が得られれば、大抵の場合には、それで先ず充分に精密な測定と思って差支えない。そして普通の物理的性質は、それ位の 精度 で分れば、それで充分に壮麗な物理学の殿堂を築き上げる材料として採用することが出来るのである。
もっとも三桁というのは、一般の場合であって、精密な 物理の測定では四桁も五桁もちゃんと測定がなされていることもしばしばある。こういう場合に意味のある数字を一桁増すことは、誤差を更に十分の一に縮めることであって、実は非常に骨の折れる仕事なのである。 学生実験の報告書とか、 独逸の学位論文の或るものとかを見ると、六桁位の数字が平気で沢山並んでいることがあるが、そういうものは大抵は、計算の途中に割算で沢山桁数を出したもので、此処ここでは問題とするまでもないものである。本当の意味で有効数字が六桁も並んでいる測定があったら、その数字には正に脱帽して接すべきである。
……(途中略)……
最後に、全く役には立たないが、ちょっと面白い一つの考察がある。 それは大抵の物理的性質は、三桁位の 精度で分れば、それで充分であるということと、人智の極致をつくした精密な測定が、殆んど例外なく六桁で止っているということである。 即ち観測の精度には、三桁と六桁とに何か意味があるらしく思われるのである。 もっとも六桁の方は前に注意した人もあって、10-6というのが極めて広い意味での 物理恒数であるというような珍説を出した人もある。 普通の物理は三桁程度というのは、それに輪をかけた迷説で、自分の実験の技術の程度を言っているのかも知れないが、その程度でも物理で生活が出来るところを見ると、何か意味があるらしくも思われるのである。
中谷宇吉郎、地球の丸い話より
ファラデー定数という 量の記号はFで 単位を C/molとしたとき、 その値は、
F = 9.64853321233100184×104C/mol
です。
フェルミ推定は、センター試験や資格試験には出ないが、入社試験では頻出する。バルクには、少なくとも物性が定まる程度の寸法が必要です。 たとえば、原子内部などに、 物性を議論するのは無意味です。
水 の三重点は、物理定数です。
物理量 | 記号 | 数値 | 単位 | |
---|---|---|---|---|
真空の透磁率 | permeability of vacuum | 4π ×10-2 | NA-2 | |
真空中の光速度 | speed of light in vacuum | , | 299792458 | ms-1 |
真空の誘電率 | permittivity of vacuum | ε = 1/ μ 0 c 2 | 8.854187817...×10-12 | Fm-1 |
電気素量 | elementary charge | e | 1.602176634×10-19 | C |
プランク定数 | Planck constant | h | 6.62607015×10-34 | J·s |
アボガドロ定数 | Avogadro constant | 6.02214086×1023 | mol−1 | |
ファラデー定数 | Faraday constant | 9.64853399(24)×104 | C/mol | |
ボーア半径 | Bohr radius | 5.2917720859(36)×10-11 | m | |
ボルツマン定数 | Boltzmann constant | 1.380649×10-23 | J·K−1 | |
水の三重点 | triple point of water | 273.15 | K | |
完全気体
(1bar,273.15K)のモル体積 |
molar volume ideal gas (at 1bar and 273.15K) |
22.710981(40) | L mol-1 |
プロセス |
アルミ ニウム 溶融塩電解 |
食塩電解 |
銅 電解精錬 |
亜鉛 電解採取 |
---|---|---|---|---|
🏞 原料 | 食塩(岩塩) | |||
製品 | 亜鉛 | |||
理論電気量 /kAh/t | 2980 | 670 | 844 | 820 |
理論分解電圧 /V | 4.17 | 2.2 | 0.1×10-3 | 2.0 |
アノード 電流密度/A/m2 | ||||
単槽 電圧/V | ||||
電気量原単位 /kAh/t | 3350 | 910 | ||
電解電力 ( 電力原単位 ) /kWh/t | 13400 | 2200 | 284 | 3000 |
電流効率 | ||||
電圧効率 | ||||
エネルギー効率 29 ) |
理論分解電圧とは、アノードとカソードの平衡電位の差であって、槽電圧(浴電圧)をこれ以下に切り下げることはできません 。
30 )銅めっき 米沢高等工業学校本館から 銀電量計を探してみよう。
アノードもカソードも銅だったら、理論分解電圧は何Vになるか?
このマークは本説明資料に掲載している引用箇所以外の著作物について付けられたものです。
2024年1月21日 松木健三名誉教授がご逝去されました。