エネルギーと ネットがつながりつつあります。 電池が物質とエネルギーを橋渡しするものだとすれば、 ネットは情報を橋渡しするものです。
情報網と電力網をあわせたスマートグリッド構想が進んでいます。限りある資源を賢く使う時代です。
廃れてゆく技術がある。マッチと銀塩写真は無機工業化学の最高傑作であったが、その歴史は幕を閉じたと言っていい。
類別/性質 | 小分類 | 例 | ||
---|---|---|---|---|
第一類
酸化性固体 |
塩素酸塩類 | 🚂 マッチ頭薬 * | ||
過塩素酸塩類 | ||||
無機過酸化物 | ||||
亜塩素酸塩類 | ||||
臭素酸塩類 | ||||
硝酸塩類 | ||||
ヨウ素酸塩類 | ||||
過マンガン酸塩類 | ||||
重クロム酸塩類 | ||||
第二類
可燃性固体 |
硫化リン | |||
赤リン | 🚂 マッチ側薬 * | |||
硫黄 | ||||
鉄粉 | ||||
金属粉 | ||||
マグネシウム | ||||
その他のもので政令で定めるもの | ||||
前各号に掲げるもののいずれかを含有す るもの | ||||
引火性固体 | ||||
第三類
自然発火性物質及び禁水性物質 |
||||
第四類
引火性液体 |
特殊引火物 | |||
第一石油類 | アセトン、 ガソリン | |||
アルコール類 | ||||
第二石油類 | 灯油 、軽油 | |||
第三石油類 | 重油 | |||
第四石油類 | ||||
動植物油類 | ||||
第五類
自己反応性物質 |
||||
第六類
酸化性液体 |
過塩素酸 | |||
過酸化水素 | ||||
硝酸 | ||||
可燃性、引火性、爆発性の物質の使い方を誤れば、火災や爆発とそれに伴う火傷や負傷が起こる可能性がある 1 ) 。 消防法で定めている。
すべてのものは、おそかれ早かれ、まちがいなく終わりにくるものではありますが、この 講演 の終わりにあたりまして、私がみなさんに申し上げることのできるすべては、皆さんが皆さんの時代がきたとき、一本の ロウソクにたとえられるのに ふさわしい人になっていただきたいということ、そしてまた、皆さんが、 ロウソク のように皆さんのまわりの人びとに対して光となって輝いていただきたいということ、皆さんのあらゆる活動の中で皆さんが、 皆さんとともに生きる 人類に対する義務を果たすことにおいて、皆さんの行為を光栄であり、かつ効果あらしめることによって、ロウソクの美を正当化していただきたいということの希望であります。
2 )
本書の内容は 1861年末 のクリスマス休暇に、ロンドンの王立研究所で催された連続6回の 講演 の記録である。 講演者は同研究所の教授マイケル=ファラデー、記録者はウィリアム=クルックスであった。
鉄の 融点は1500度。その 温度を光の 色から正確に測ろうとします。 量子力学の誕生です。
ロウソクは、熱エネルギーで煤を高温にして、黒体放射で光エネルギーに エネルギー変換します。 白熱電球は、タングステンフィラメントで、電気エネルギーでを熱エネルギーに変換し、 高温のフィラメントから黒体放射で、光エネルギーに エネルギー変換します。
物体からは、熱や光となって 放射 します 3 ) 。 黒体からの放射エネルギーは、ある波長で極大があり、その極大波長は、物体の温度が高くなると短い方へずれる 4 ) 。
色温度toRGB 黒体放射ガラス管の中を真空にして、電極から放電させます。
写真技術は 江戸時代に開発され、平成時代でデジタルカメラに置き換わりました。
工業製品 | システム | 電池の種類 |
---|---|---|
住宅 | 据え置き型電池(卒FIT)(ESS/BESS * ) | LIB 、建物付属の蓄電池電源設備としての法定耐用年数は6年。 |
スマホ | 内蔵 | 充電式電池( LIB ) |
PC | UPS | LIB |
自動車 | 駆動用 | LIB ニッケル水素( モノポーラ、バイポーラ) |
自動車 | 始動用 | 鉛電池(モノポーラ、バイポーラ) |
リモコン | 乾電池 ×2 | 乾電池 |
電動歯ブラシ | 乾電池 | |
◇ 時計 | 乾電池 |
エネルギー(電力量・ワットアワー)と仕事率(ワット)は違います! 蓄電池の電池容量は、電気エネルギ―です。
項目 | 説明 | 例 | |
---|---|---|---|
残量(SOC 6 ) 7 ) ) | バッテリーの貯蓄率(%)として 読み取り可能。 | 満充電時から測定した放電容量ではなく、 公称容量[Ah]を使用する場合があります。 またSOC- OCV曲線から推定することもあります。容量維持率とも。 | |
満充電までに必要な時間 | 秒単位で 読み取り可能=電池の 内部抵抗と充電電圧から計算 | ||
枯渇するまでの残り時間 | 秒単位で 読み取り可能= 残り容量/(消費電力/公称電圧) | ||
劣化率(SOH 8 ) ) | 現在、未対応 状態監視保全のために必要。 | ||
電圧 | 現在、未対応 | 公称電圧より大幅に下がった場合、 緊急保全が必要。 内部短絡などの恐れも。 | |
内部抵抗 | 現在、未対応 | ||
温度 | 現在、未対応、過熱時のアラート発生に必要。 | ||
湿度 | 現在、未対応 | ||
結露 | 現在、未対応、水没時の短絡などアラート発生に必要。 |
PCや スマホの電池の状態は、ブラウザからアクセスできます。いずれ、自動車や 住宅の電池の状態もブラウザからアクセスできるようになるでしょう。 バッテリの状態はjavaとhtml5で読み取ります。 バッテリーでユーザー追跡可能になります。 この電池は誰が作ったのか、逆追跡も可能になるでしょう。
電池 | 電池式 | 性質や特色 | |
---|---|---|---|
歴史的電池 |
1800
ガルバノ電池 (ボルタ電堆) |
Zn|H2SO4aq|Cu | 銅は単なる集電体。正極活物質は酸素。 |
ダニエル電池 | Zn|Zn2+aq||Cu2+aq|Cu | 正極活物質と負極活物質が分離。集電体は反応系を兼用 | |
一次電池 | 1888 乾電池 9 ) | Zn|NH4Claq|MnO2, C|C | 正極活物質に酸化物(固体)とバインダーを採用。正極合材。 負極活物質の 亜鉛は両性金属なので、アルカリに溶けてしまう。 |
1950 アルカリ乾電池 | Zn | KOHaq | MnO2 ,C | Ni | ||
1970 リチウム電池 | Li | LiClO4,PC | MnO2,C | SUS304 | 有機電解液 採用。 | |
二次電池 | 1991 リチウムイオン電池 10 ) | (-) Cu | C | LiPF6,EC+DEC | LiCoO2, C | Al (+) | |
鉛電池 | 鉛は両性金属だが、硫酸には溶けない。 | ||
ニカド電池 * | Cd|Cd(OH)2|KOH aq|NiOOH | 亜鉛と違って カドミウムは両性金属でないのでアルカリに溶けない。 | |
ニッケル水素電池 | MH|KOH aq|NiOOH | 水素吸蔵合金はアルカリに溶けない。 |
イタリアの解剖学者Lugi Galvani(1737-1798)は、蛙の解剖に端を発した二つの異種金属を接触させたときに流れる電流を動物電気と称した(1979)。 この現象は直ちに同国のAlessandoro Count Volta(1745-1827)により追試され、ボルタの電堆として実証された(1800年3月)。 Galvaniの業績をたたえてこの種の電池を ガルバニ電池と呼んでいる。
懐中電灯やラジオだけでなく、スマホの充電用に 災害向けのポータブル電池もあります。
JVC災害用電池電池式 | Zn | KOH | MnO2 , C | Ni |
カソード 反応(正極) | 2MnO2+ 2H2O+ 2e- → 2MnOOH+2OH- Eº = 0.215V |
アノード 反応(負極) | Zn(OH4)2- +2e- ← Zn+4OH- Eº = -1.285V |
全反応 | 2MnO2+ Zn+ 2H2O+ 2OH- → 2MnOOH+ Zn(OH4)2- |
起電力/V | Eº = 1.5V (公称電圧) |
理論容量 ( 電力原単位 ) | 224.0mAh/g |
理論重量エネルギー密度 15 ) | 336.0mWh/g |
形状・寸法 | 円筒(AM3、AM4)、ボタン(LR44) |
用途 | リモコン、電動ハブラシ、玩具、懐中電灯、時計 |
1950ぐらいから。
イオン化傾向の大きな物質と、小さな物質の組み合わせです。
電池から電流を取り出すことを放電と言います。 充電できる電池を二次電池または蓄電池と言います。 16 )
今日、実用電池と呼ばれるもののほとんどが、 正極活物質には金属酸化物を、 負極活物質 に亜鉛を用いていること、電解液には アルカリ溶液(KOH)を用いること、 電池の名称に正極活物質の金属名を利用していることなどがわかる。 17 )
乾電池は酸化マンガン(Ⅳ)と 炭素材料の粉末をペースト化して正極合材とし、亜鉛缶に詰める。そこに集電体の炭素棒を突き刺す。 リチウムイオン電池は、アルミニウムの集電体にコバルト酸リチウムと炭素材料の粉末を合材 スラリーにして塗布・乾燥し、正極とする。 電池の製造には、材料ばかりでなく、混合、塗布、乾燥などの技術が必要となる。
山下正通、小沢昭弥 現代の電気化学 電池とエネルギー , 丸善, , (2012).
二次電池には鉛電池、ニッケル水素電池、リチウムイオン二次電池などがある。
鉛電池は自動車やフォークリフト、UPSなどに広く利用されている。鉛電池は リサイクルが進んでいる電池です。 自動車のバッテリーの電圧 を モニタリングしてみよう。
太陽電池で発電した電池はどこかにためる必要がある。 ニッケル水素電池は充電式電池として広く利用されている。 東日本大震災で売り出されたソーラーライトは、生産終了してしまった。 それはどのような理由が考えられるか?
1000mAhのお手軽モデルに充填されている 水酸化ニッケルは何グラムか?
項目 | コンデンサマイク (エレクトレット) | ダイナミックマイク | ||
---|---|---|---|---|
感音材料 | 誘電体(圧電体) ( セラミックス) | 磁性体(金属) | ||
原理 | コンデンサによる静電容量の変化を捕らえます。 | コイルによる起電力を捉えます。 | ||
用途 | スマホ、PC | スマートスピーカー | ||
歴史 | 昭和(戦後) | 平成(スマホ)、昭和(イヤホン) |
マイクは、空気の圧力を電圧に 変換する圧力センサー。
テレワークや電話に必須。
ブドウには、ごく微量ですが酒石酸(しゅせきさん)が含まれています。ブドウからワインを醸造すると、ワイン中に沈殿する滓にも、貯蔵する酒ダルの周壁にも、白い小さな結晶体が生じます。この滓や周壁の酒石酸が粗酒石(そしゅせき)です。また、ワインの液中にも酒石酸が混在し、ワインの搾り粕にも酒石酸が混在しています。ワインの液中や絞り粕から酒石酸を採取するには普通、脱酸用石灰を添加し、酒石酸石灰として採取する方法がありました。しかし、手っ取り早いのはやはり、周壁や沈殿滓の粗酒石を直接採取する方法でした。採取した粗酒石に加里ソーダを化合させると、酒石酸加里ソーダという少し大きな結晶体が精製されます。これがロッシェル塩と呼ばれるもので、山梨県に所在の「サドヤ醸造場」が国内で唯一、製造が可能でした。
ロッシェル塩は、音波をすばやく捉える特性があり、第2次世界大戦ではドイツがいち早くこれを採用して音波防御レーダーを開発、艦船に装備して、潜水艦や魚雷に対処する兵器とし、効果を発揮していました。
日本の海軍は昭和17年(1942)6月、中部太平洋のミッドウエーの海戦で、航空母艦4隻を失う大打撃を受けます。敗退直後から、海軍では同盟国のドイツに兵員を派遣し、ロッシェル塩を利用した探査技術を習得させ、艦艇の戦備を強化することにしました。昭和18年初頭から、海軍は全国のワイン醸造場に粗酒石の採取を働きかけ、粗酒石は山梨県の「サドヤ醸造場」に集めロッシェル塩を精製し、精製品は東芝などの大電機メーカに依頼して、対潜水艦用の水中聴音機の量産態勢を構築しました。水中聴音機は、まさにブドウから作る兵器です。
国税庁HPより *
項目 | 圧電スピーカー | ダイナミックスピーカー | ||
---|---|---|---|---|
発音材料 | 圧電体 ( セラミックス) | 磁性体(金属) | ||
用途 | スマホ、PC | スマートスピーカー | ||
歴史 | 昭和(戦後) | 平成(スマホ)、昭和(イヤホン) |
テレワークや電話に必須。
圧電体(最新工業化学p.26)や磁性体(最新工業化学p.26)は、圧電スピーカー、 フィルムスピーカー、 平面スピーカー、 クリスタルイヤホン、 ダイナミックスピーカー、などの音響デバイスに応用されています。
ダイナミックスピーカーは、音響単独ではなく、スマートスピーカーやスマートディスプレイ、リモート会議システムなどで応用されることが多くなりました。
オンキヨー上場廃止で「オーディオ御三家」消滅…80年代にはミニコンポの大流行も記号 | 音名 | 周波数/Hz (有理和音) |
周波数/Hz (平均律) |
|
---|---|---|---|---|
E | ・・ホ | 660 | 659.25511382574 | |
C# | 嬰・・ハ | 550 | 554.365261953744 | |
C | ・・ハ | |||
H | ||||
B | ・ロ | |||
A | ・イ | 440 | 440 | |
G# | ||||
G | ・ト | |||
F# | ||||
F | ・へ | |||
E | ・ホ | 330 | 329.62755691287 |
平均律では、音階は、2の12乗根です。 iを虚数単位とすると、k番目の音階は、複素平面で、exp(2πki/12)の点で表されます。 ハ長調は、水平軸に来ます。イ短調が、垂直軸に来ます。 どの長でも 平行調 は、直交します。 トニック 、サブドミナント、ドミナントは、二等辺三角形になります。
2024年1月21日 松木健三名誉教授がご逝去されました。