平行平板電極であれば、
セル定数a=電極間距離d÷セル断面積S
です。
一般的には、導電率既知のKCl溶液などを使って、セル定数を較正します。
コンダクタンス=導電率
電気抵抗=抵抗率×長さ÷電極面積
物理量 | 単位 | 凡例 |
---|---|---|
電極間距離 d | m | 電界の強さ=電圧÷電極間距離 |
セル断面積 S | m² | 拡面倍率1で、平板モデルのとき電極面積≒セル断面積 |
電極面積 A | m² | 実験室でよく使う旗型電極の電極面積は 1cm²。 |
セル定数 a | 1/m |
セル定数a=電極間距離d÷セル断面積S コンダクタンス G = 導電率 σ ÷セル定数 電気抵抗=抵抗率ρ×セル定数a |
バルク電流密度j | A/m2 | バルク 電流密度 j = 電流I÷セル断面積 |
界面電流密度j | A/m2 | 界面 電流密度 j = 電流I÷電極面積 |
電界の強さe | V/m | 電界の強さe = 電圧V÷電極間距離 |
分類 | 種類 | 備考 | |
---|---|---|---|
セル(単電池) | 二極式 フルセル | 実用電池(コインセル、円筒型電池)、メッキ試験(ハルセル)、電解槽など。 アノード、 カソードのみ | |
三極式 ハーフセル | 作用極 、対極、 参照極 | ||
バッテリー(組電池) 電解槽 |
単極式(モノポーラ) | ||
複極式(バイポーラ) | 液を通しての短絡電流を防ぐなどの工夫が必要となる。 トヨタ 古河電池 |
バイポーラ接続では、ブスバーなどの重量を低減できるため、 バッテリーだけでなく、 水電解の電解槽などでも、応用が考えられるが 液絡のリスクを減らすのが課題です。 1 )
等電位線(等電位面)は、平面上(空間中)の電位の等しい点をつないだ線(面)です。 等電位線は、気象の天気図の等圧線、地図の等高線と同じ概念と思ってさしつかえありません。
大きな平行板電極を小間隔で向かい合わせると、電界の強さおよびその方向が、均一になります。 これを平等電界と言います。 でも、板の端の部分では電界が両電極板の外側に出る形になり平等電界ではなくなります。 この現象を端効果たんこうか(縁効果えんこうか)と言います。 https://em.ten-navi.com/dictionary/1763/
名称 | 概略 | 制御 | 測定 | 装置 | |
---|---|---|---|---|---|
クロノポテンショメトリー (CP) | 電圧電気量曲線 電池 の 充放電曲線 過渡応答 など | 電流 | 電圧 ( 電位 )、時刻 | 🚂 ガルバノスタット、データロガー | |
クロノアンペロメトリー | クロノアンペログラム 電流絞り込み曲線など | 電圧 | 電流、時刻 | 🚂 ポテンショスタット 2 ) 、データロガー | |
リニアスイープボルタンメトリー (LSV) | 分解電圧の測定など | 電圧、掃引速度 | 電流 | 🚂 ファンクションジェネレータ、 🚂 ポテンショスタット、データロガー | |
サイクリックボルタンメトリー ( CV) 3 ) | 電圧、掃引速度 | 電流 | 反応種の特定など | ||
電圧電流曲線 | 電流 | 電圧 | 電池の内部抵抗 | ||
コンダクトメトリー | 導電率 誘電率 の測定など | 電圧 | 電流 | 🚂 ファンクションジェネレータ 4 ) 、 🚂 ポテンショスタット、データロガー | |
交流インピーダンス法 | 導電率 の測定など | 電圧 周波数 | 電流 | ファンクションジェネレータ、ポテンショスタット、データロガー、 オシロスコープ、 LCRメータ * * |
直流 | 交流 | |||
---|---|---|---|---|
主な対象 | 界面 | バルク | ||
主な評価項目 | 直流抵抗( DCR) | イオン導電率 | ||
主な評価方法 | 短絡試験、定負荷試験、定電流試験 | 交流インピーダンス法 、 過渡応答試験 |
交流インピーダンス法 で測定した、 コールコールプロット の切片は、バルク抵抗(溶液抵抗など)です。 複雑な 電池の内部抵抗 は、 バルク抵抗より界面抵抗に支配されます。 周波数が高いと、界面抵抗と 並列の容量が比較的小さくても(皮膜、 空間電荷層) リアクタンスが小さくなってしまうため、 内部抵抗の推定は、直流抵抗の評価が大切です。
交流の電流と電圧の比を インピーダンスと言います。
インピーダンス は複素数なので、実部と虚部があります。 実部をリアクタンスと言い、虚部をレジスタンスと言います 5 ) 。 各周波数での インピーダンスの軌跡を複素平面上にプロットしたものを コールコールプロットあるいはナイキストプロットと言います。
*python では、複素数が使えるので、短いプログラムでコールコールプロットのシミュレーションができます。
固体電解質の粒界をインピーダンスで調べようとすると、誘電分極ではなう電子分極させなければならないため、かなり高い周波数が必要です。 もっとも、そうやって調べる粒界抵抗は、電子抵抗であって、電子の2000倍もの質量をもつイオンが、粒界を通過できる保証はありません。結局、テストセルを作って、直流分極するしかありません。