◇ 機能界面設計工学特論 Web Class 📆 3-3308
三相界面とコンタクトライン長さ
活物質/ 略号 | 理論容量 /mAh/g | 実効容量 (可逆容量) /mAh/g | 用途 | 特徴 |
---|---|---|---|---|
酸素 | 燃料電池、ガルバノ電池(ボルタ電堆)、 11円電池 | 気体 | ||
銅イオン | ダニエル電池 | 液体 | ||
二酸化マンガン | 308.3 | アルカリ乾電池 | ||
🏞 コバルト酸リチウム/ LCO | 273.8 | 130~150 | リチウムイオン電池 (スマホ) |
LiCoO2←Li++e-+CoO2
コバルト回収採算可 |
🏞 ニッケル酸リチウム | 274.5 | |||
NCM | 277.9 | 160 | ||
リチウム過剰NCM | 267.1 | 160 | ||
ハイニッケル NCM,LNCM523 | 180~200 | ニッケル回収採算可。 インセンティブは補助金? | ||
🏞 ハイニッケル NCA | 180~200 | ニッケル回収採算可 | ||
🏞 マンガン酸リチウム(スピネル) LMO * | 148.2 | 110~120 | 密度4.1 * 導電率1×10-6S/cm | |
🏞 LFP LiFePO4 | リーズナブル。 バイポーラで、NCM置換可能。 |
正極活物質は、主に 電池 の 正極で使われる酸化剤です。 充電式電池(二次電池)では、充電前の電池材料 である正極材料も活物質と呼ばれることがあります。 負極には還元剤が使われます。 酸素、酸化物(二酸マンガン)やフッ化物、硫化物が使われます * 。
* F=96485.33212331 F/Fw*Z略号 | 理論容量 /mAh/g | 実効容量 /mAh/g | 用途 | 特徴 | |
---|---|---|---|---|---|
H | 燃料電池 | ||||
Zn | 819.7 | アルカリ乾電池 ダニエル電池 | |||
Li | 3861.3 | ||||
水素吸蔵合金 | |||||
C | 371.9 | リチウムイオン電池 密度2.2 * アルミ電解アノード | (スマホ) |
負極活物質は、主に 電池 の 負極で使われる還元剤です。 充電式電池(二次電池)では、充電前の 電池材料 である負極材料も活物質と呼ばれることがあります。 金属(亜鉛やリチウム)や金属イオンを取り込める層状化合物(グラファイトなど)が使われます * 。 正極には酸化剤が使われます。
固体 | 液体 | 気体(真空) | |
---|---|---|---|
固体 |
面接触(例:
pn接合) 線接触(三相界面)(例:正極合材、 局部電池) 点接触(三相界面 ショットキー接触 )(例:固体電解質、 炭素導電助剤粒子 ) |
固液界面 (例:サスペンジョン) | 表面 |
液体 | 固液界面 (例:電極と電解液) | 液液界面 (例:エマルション) | 気液界面 ( 表面 ) |
気体(真空) | 表面 | 気液界面 ( 表面 ) | (混合) |
物質は、 様々な状態をとります。 界面や表面 は、ある材料の相と異なる材料の相が接するところです。
電池の内部抵抗は、バルクと界面との両方から生じます。
空間電荷層を含みます。
LUMOは、最低空分子オービタル。 HOMOは、最高被占分子オービタル。 基本的にHOMOが高いほど酸化されやすく(酸化還元電位が低い)、LUMOが低いほど還元されやすい(酸化還元電位が高い)。
LUMOのエネルギー準位と HOMOのエネルギー準位とのあいだに フェルミ準位があると思っていい。
Fe3+/Fe2+の半反応式は次式で表されている.この半反応式の 酸化還元電位は標準水素電極(NHE)に対し +0.771 Vである.
本講義では、界面・表面現象や光イメージングといった物理化学的な現象の工学分野における役割を学ぶ。そこでは、化粧品、医薬品および食品を開発する上で重要な、皮膚、毛髪および粘膜上で起こる界面現象から、電池やコンデンサなどのエネルギーデバイスを中心の機能を効率よく発現させるための界面設計、そして、粉体の分散・凝集に関する粉体表面の物性およびその測定法,さらに様々な表面処理方法等について論ずる。また、光学顕微鏡を用いた光イメージングについて、光学素子の役割、イメージの結像、光の回折限界と空間分解能などについて解説する。多重染色によりさまざまな物質を識別できる蛍光顕微鏡において重要となる蛍光色素および蛍光タンパク質などの蛍光プローブとその利用法について解説するとともに、レーザーマニピュレーション法や近年実用化されたナノメートルの空間分解能を持つ超解像蛍光顕微鏡等の応用例を紹介する。
本講義では、物質の有効活用の観点から、物質や生体が有する情報の取得・解析法に関する内容について解説する。そこでは、物質の分離法および機能発現に関するアプローチ他、呼吸,循環に関する生体情報の計測法や生体計測技術により運動中に得られた生体情報を応用生理学的解釈へ導くための解析法についても紹介する。また、工学分野で生産管理や品質管理で使用される分析機器について、ハードウェアおよびソフトウェア,AD変換などの計測技術について解説し、工場などで使われているライフサイクル管理システムにおける分析機器や分析化学の位置づけ,ラインモニタリング技術に対する理解を深める。小型・軽量化が進むセンサーやその周辺の電子回路,AD変換器,マイコン制御についても解説し,IoT(Internet of Things)やIoE(Internet of Everything)を目指した周辺技術など最近のトピックも紹介する。