èªç¶ç© | äººå·¥ç© | |||
---|---|---|---|---|
å·¥èžå | å·¥æ¥è£œå | |||
äŸ1ïŒéå · | ããããå°é³¥ | ãã€ããªã«ã¬ã³ | ð ãã¢ã | |
äŸ2ïŒé£ã¹ç© | é | åããªãå¯¿åž | ã«ããã©ãŒã¡ã³ | |
äŸ3ïŒãšãã«ã®ãŒ | æŽ | é»æ°ãã¬ã¹ãç¯æ²¹ | ||
äœãæ | ãªã | è·äººãæèœè ãã¯ãªãšãŒã¿ |
åŽåè
ãäœæ¥è
ïŒâ»èšèšã¯æè¡è ïŒ |
|
顧客 | ãªã | ç䟯貎æãæäŒãå¯è£å±€ | åžæ°ãåº¶æ° | |
æŽå² | ãªã | ç£æ¥é©åœ 以é | ||
圢æ | ç®äžãå¯é² | 販売 | ||
é | ããã®ãŸãŸ | 䞹粟蟌ããŠã²ãšã€ | å·¥å Žã§å€§éçç£ | |
å質(Q) | ããã®ãŸãŸ | 䞹粟蟌ããŠã²ãšã€ | åãå質ã ã°ãã€ã ãªã | |
ã³ã¹ã(C) | ãã ïŒ | é売åïŒ | å®ããäœã³ã¹ã 1 ) | |
çŽæ(D) | æ©ããå³çŽïŒåºå£²ãïŒ | |||
ç°å¢(E) | æç¶å¯èœ | ä¿è· | å»æ£ç© |
ããŒã¿ãšã¯ã è«æ ã å ±åæž ã®è«æ ãšãªãå ±æã§ãã æ å ±ã§ãã
ããŒã¿ïŒdataïŒ : ããŒã¿ã ïŒdatumïŒã®è€æ°åœ¢ã§ããè«æ ã» åºç€è³æã å®éšã芳å¯ãªã©ã«ãã£ãŠåŸãããäºå®ãç§åŠç æ°å€ããªã©ãæå³ããããäžãããæã®ã©ãã³èªããŒã¬ïŒdareïŒã®å身圢ããã§ããã®ãã倧æ¥æ¬çŸç§äºå žãïŒå°åŠé€š, 1980ïŒ *
ããžã¿ã«åè·¯èšã§ã ïŒïŒåé»æ± ã®èµ·é»åã枬ãããšãããšè¡šç€ºãäžå®ã«ãªããŸããã ãã®ãããªãšããïŒïŒåé»æ± ã®èµ·é»åãã©ããã£ãŠãããŒã¿ã«ããã°ããã§ããããïŒ
ã¢ããã°åè·¯èšã§ã¯ãç®çãã®ãšããã人ãèªã¿ãŸããèªã¿åã 誀差ã«ãªããŸãã ããžã¿ã«å路系ã§ã¯ãäžå®æéããšã« å€æãããæ°å€ãçŽæ¥è¡šç€ºãããŸãããããæ°å€ã®ã°ãã€ãã«ãªããŸãã
å | æ° | ããã°ã©ãã³ã°èšèª | |
---|---|---|---|
æŽæ° | æŽæ° | Basic (Int), C(int), | |
å粟床浮åå°æ°ç¹ | å®æ° | Basic (Single), C(float), | |
å粟床浮åå°æ°ç¹ | å®æ° | Basic (Double), C(double), Python (float) | |
è€çŽ æ° | Python (complex) |
枬å®å€ãªã©ãè¡šãæ°åã®ãã¡ã§ãäœåãã瀺ãã ãã®0ãé€ãããæå³ã®ããæ°åãæå¹æ°åãšèšãã ããšãã°ã1.234g±0.012gãšãã枬å®çµæããããããã äžç¢ºãã ãç¡èŠããŠïŒã€ã®å€y=1.234gãšããŠè¡šãããšãèããã äžç¢ºãã ãèæ ®ããå€ã¯ãããã1.222gïœ1.246gã®ç¯å²ã«ãããšèããããã 2 )
ãã®ããšã¯ã枬å®å€ã«éã£ãããšã§ã¯ãããŸããã ããšãã°ãååšçãšããæ°ã«ã¯ã確ããªå€ããããŸãããæ°åã§è¡šçŸãããããã°ã 3.14ãããã¯3.14159ãšããå ·åã«è¡šçŸããªããã°ãªããŸããã ãã¯ãæå¹æ°åãååšããã®ã§ãã
ããã«ããã¯10é²æ°ã«éã£ãããšã§ã¯ãããŸããã ã³ã³ãã¥ãŒã¿ã®å éšã§ã¯ã2é²æ°ã§è¡šçŸãããããšãå€ããããŸãã ãã®è¡šçŸåœ¢åŒãããŸããŸã§ãã å粟床浮åå°æ°ç¹ãå粟床浮åå°æ°ç¹ãšãã£ã圢åŒãããã®ã¯ããã®ããã§ã 3 ) ã
å粟床浮åå°æ°ç¹ã¯ãå®æ°ã64ãããã§è¡šçŸããŸãã å®æ°ã¯ç¡ééåã§ããããã«å¯ŸããŠ64ãããã®è¡šçŸã¯264ã®æééåã§ãã å®æ°ãšããžã¿ã«æ°å€ãïŒïŒïŒå¯Ÿå¿ãããããšã¯ã§ããŸããã å¿ ãéåå誀差ãå ¥ããŸãã
ããžã¿ã«ã³ã³ãã¥ãŒã¿ã®ãããªããžã¿ã«ããã€ã¹ã§ã¯ã ããŒã¿ã¯ã ããžã¿ã«æ å ±ãšããŠèšæ¶ãŸãã¯èšé²ãããŸã 4 ) ã
æ°å€ | åºå | 现å | 説æ |
---|---|---|---|
枬å®å€ | 系統誀差 | å埩枬å®ã«ãããŠãäžå®ã®ãŸãŸã§ãããããŸãã¯äºæž¬å¯èœãªå€åããã枬å®èª€å·®ã®æåã | |
æ©æ¢°ç誀差 | ãã®ã¹ã倩秀ãã¡ã¹ã·ãªã³ããŒãªã©æž¬å®åšã®ç²ŸåºŠã 粟確ãïŒ ç¢ºåºŠïŒ ã«ãã誀差 | ||
å人ç誀差 | 枬å®è ã®ããã«ãã誀差 | ||
çè«ç誀差 | çè«ã®çç¥ãªã©ã«ãã誀差 | ||
å¶ç¶èª€å·®
random error |
å埩枬å®ã«ãããŠãäºæž¬ãäžå¯èœãªå€åããã枬å®èª€å·®ã®æåã 誀差è«ïŒç¢ºçã»çµ±èšïŒã®å¯Ÿè±¡ | ||
èšç®å€ | èšç®èª€å·® | å€æ ã å€æãäžžã誀差ãèšç®ç²ŸåºŠã«ãã誀差ã æ°å€ ããŒã¿ã®æ ŒçŽæ¹åŒã«ãã誀差ã | |
èšèšå€ |
å
¬å·®
tolerance |
補åã®ä»æ§å³ãèšèšå³ã§ãåºæºå€ãã蚱容ãããå€ã æ¹åãæå®ãããŠããå ·äœçãªãã®ã¯èš±å®¹å€ãšåŒã°ããã |
誀差ïŒerrorïŒã¯ã枬å®å€ããçå€ãåŒããå€ã§ããç¹ã«ã枬å®èª€å·®ãšèšãããšããããŸãã 5 )
誀差ãæ€æ»ã枬å®ã«ãããã®ã«å¯ŸããŠã å ¬å·®ã¯èšèšã«ããããŸãã äžé©åãåºããªãèšèšãããã«ã¯ãç 究éçºæ®µéãããå ¬å·®ã®èšèšã倧åã§ãã
ååŠã§äœ¿ãããéã»åäœã»èšå· 6 ) 誀差ãšãã€ãº 7 )ããããæå³ã®ãã æ°å ãæå¹æ°åãšããã®ã§ããããæå¹æ°åãäžæ¡ãšããã®ã¯ãäŸãã°56.2ãšã7.31ãšãããæ°ã§ãããæ°åã§æžããŠèŠããšäžæ¡äœã®ãã®ã¯æ¥µããŠç°¡åãªæ°ã§ãå°åŠæ ¡ã®äžå¹Žçäœãªãã°æ¥œã ãšåãæ±ããçšåºŠã®ãã®ã§ããããšãããç©çã®æ¹ã§ã¯äžæ¡ç®ãŸã§ç²Ÿç¢ºãªæž¬å®å€ãåŸãããã°ã倧æµã®å Žåã«ã¯ãããã§å ãå åã«ç²Ÿå¯ãªæž¬å®ãšæã£ãŠå·®æ¯ããªãããããŠæ®éã®ç©ççæ§è³ªã¯ãããäœã® 粟床 ã§åãã°ãããã§å åã«å£®éºãªç©çåŠã®æ®¿å ãç¯ãäžããææãšããŠæ¡çšããããšãåºæ¥ãã®ã§ããã
ãã£ãšãäžæ¡ãšããã®ã¯ãäžè¬ã®å Žåã§ãã£ãŠã粟å¯ãª ç©çã®æž¬å®ã§ã¯åæ¡ãäºæ¡ãã¡ãããšæž¬å®ããªãããŠããããšããã°ãã°ãããããããå Žåã«æå³ã®ããæ°åãäžæ¡å¢ãããšã¯ã誀差ãæŽã«ååã®äžã«çž®ããããšã§ãã£ãŠãå®ã¯éåžžã«éªšã®æããä»äºãªã®ã§ããã åŠçå®éšã®å ±åæžãšãã ç¬éžã®åŠäœè«æã®æããã®ãšããèŠããšãå æ¡äœã®æ°åãå¹³æ°ã§æ²¢å±±äžŠãã§ããããšããããããããããã®ã¯å€§æµã¯ãèšç®ã®éäžã«å²ç®ã§æ²¢å±±æ¡æ°ãåºãããã®ã§ãæ€åŠããã§ã¯åé¡ãšãããŸã§ããªããã®ã§ãããæ¬åœã®æå³ã§æå¹æ°åãå æ¡ã䞊ãã§ãã枬å®ããã£ããããã®æ°åã«ã¯æ£ã«è±åžœããŠæ¥ãã¹ãã§ããã
âŠâŠïŒéäžç¥ïŒâŠâŠ
æåŸã«ãå šã圹ã«ã¯ç«ããªãããã¡ãã£ãšé¢çœãäžã€ã®èå¯ãããã ããã¯å€§æµã®ç©ççæ§è³ªã¯ãäžæ¡äœã® 粟床ã§åãã°ãããã§å åã§ãããšããããšãšã人æºã®æ¥µèŽãã€ããã粟å¯ãªæž¬å®ããæ®ãã©äŸå€ãªãå æ¡ã§æ¢ã£ãŠãããšããããšã§ããã å³ã¡èŠ³æž¬ã®ç²ŸåºŠã«ã¯ãäžæ¡ãšå æ¡ãšã«äœãæå³ããããããæãããã®ã§ããã ãã£ãšãå æ¡ã®æ¹ã¯åã«æ³šæãã人ããã£ãŠã10-6ãšããã®ã極ããŠåºãæå³ã§ã® ç©çææ°ã§ãããšãããããªç説ãåºãã人ãããã æ®éã®ç©çã¯äžæ¡çšåºŠãšããã®ã¯ãããã«èŒªãããã迷説ã§ãèªåã®å®éšã®æè¡ã®çšåºŠãèšã£ãŠããã®ããç¥ããªããããã®çšåºŠã§ãç©çã§ç掻ãåºæ¥ããšãããèŠããšãäœãæå³ãããããããæãããã®ã§ããã
äžè°·å®åéãå°çã®äžžã話ãã
çšèª | å®çŸ© | åè |
---|---|---|
|
||
|
å埩枬å®ã«ãããŠãäºæž¬ãäžå¯èœãªå€åããã枬å®èª€å·®ã®æå | |
|
å埩枬å®ã«ãããŠãäžå®ã®ãŸãŸã§ããããŸãã¯äºæž¬å¯èœãªå€åããã枬å®èª€å·®ã®æå | |
|
枬å®å€ãããã£ãŠãããããšããŸãããµãããã®çšåºŠã | å¶ç¶èª€å·®ãšã»ãŒå矩ã |
|
枬å®å€ã®æåŸ å€ãšçå€ã®å·® | 系統誀差ãšã»ãŒå矩ã |
|
枬å®å€ã«ä»éãããåççã«æž¬å®å¯Ÿè±¡éã«ããã³ã¥ããããå€ã®åºãããç¹åŸŽã¥ãããã©ã¡ãŒã¿ | ç¥èã®ææ§ããå«ã |
|
åäžã®æž¬å®å¯Ÿè±¡éã«å¯Ÿãã枬å®ãè€æ°åè¡ãããš | 枬å®æ¡ä»¶ãåäžãã©ããã«ãããªãã å®éšèšç»æ³ã§ã¯ããããã¯åäœã§ã®å®éšãæãã |
|
åäžã®æž¬å®å¯Ÿè±¡éã«å¯Ÿãã枬å®æé ããªãã¬ãŒã¿ãæäœæ¡ä»¶ãå Žæãåäžã®ãçæéã§ã®æž¬å®ã®å埩 | æäœæ¡ä»¶ã¯ãå åãç¹°ãè¿ãæ°ã¯ãæšæ¬æ°ã«çžåœããã |
|
枬å®ã®åçŸæ¡ä»¶äžã§ã®æž¬å®ã®ç²Ÿå¯ã | |
|
粟床ã ã°ãã€ãã®å°ãããè¡šãã | |
|
確床 | |
枬å®å€ | èŠå®ããã枬å®æé ã«å®æœã«ãã£ãŠåŸããã éã® å€ | 枬å®ãå埩ãããšãã¯ãåã ã®å€ããããã¯ä»£è¡šå€ïŒå¹³åå€ãäžå€®å€ãªã©ïŒã®ãããã枬å®å€ãšåŒã¶ã |
æç€ºå€ | 枬å®åšãæ瀺ãã éã® å€ |
å¹Žå· | åºæ¥äº |
---|---|
B.C.300 | ã¢ã©ãã¢æ°å |
â 16äžçŽ | |
ãã«ã«ããæ°ãšå³åœ¢ãçµã³ä»ãã解æ幟äœåŠ | |
ãã¥ãŒãã³ã埮åç©ååŠ 10 ) | |
ãã¹ã«ã«ããã§ã«ããŒãè³åã«é¢ããç 究ïŒç¢ºçè«ãšçµ±èšåŠïŒ 11 ) | |
ãã確å®ãã確çã®å ã§ãå¶ç¶çã«è¡šããå€æ°ã確çå€æ°ãšåŒã¶ã ç¹ã«ããµã€ã³ãã®ç®ã®ãããªé¢æ£çãªç¢ºçå€æ°ã«ã€ããŠã® 確çååžãé¢æ£ååžãŸãã¯é¢æ£ç¢ºçååžãšåŒã¶ã äžæ¹ãå®æ°ã§è¡šãããé£ç¶çãªç¢ºçå€æ°ã«å¯Ÿãã 確çååžãé£ç¶ååžãããã¯é£ç¶ç¢ºçååžãšåŒã¶ã
12 )
é£ç¶ååžã§ã確çå€æ°xãããå€ããå°ããå€ã§ãã確çãxã®é¢æ°ã ååžé¢æ°ïŒçŽ¯ç©ååžé¢æ°ïŒãšèšããŸã 13 ) ã
ç²äœã®ç²åŸãè¡šãã«ã¯ãæ®ççæ²ç·ãééçæ²ç·ãé »åºŠååžæ²ç·ãããã㯠ãã¹ãã°ã©ã ã䜿ãããŸãã æ®ççããã³ééçã50ïŒ ã«ãªãç²åŸãã¡ãžã¢ã³åŸãé »åºŠååžãæ倧ã«ãªãç²åŸãã¢ãŒãåŸãšèšããŸãã ã¡ãžã¢ã³åŸãã¢ãŒãåŸã¯ãå¹³åç²åŸãšããŠäœ¿ãããŸã 14 ) ã
# â â â ååžé¢æ°ãšç¢ºçå¯åºŠé¢æ° â â â from scipy import stats import numpy as np import matplotlib.pyplot as plt import random sm = 52.2 # å¹³åïŒæ¯å¹³åïŒ ss = 9.5 # æšæºåå·®ïŒæ¯æšæºåå·®ïŒ fig = plt.figure() ax1 = fig.add_subplot(1, 2, 2) ax2 = fig.add_subplot(1, 2, 1) x = np.arange(start = sm - 3 * ss, stop = sm + 3 * ss, step = ss * 0.1) ax1.plot(x, stats.norm.pdf(x = x, loc = sm, scale = ss)) ax2.plot(x, stats.norm.cdf(x = x, loc = sm, scale = ss)) plt.show() # â â â ååžé¢æ°ãšç¢ºçå¯åºŠé¢æ° â â â
ç¡éã«å®éšãç¹°ãè¿ãããšã¯ã§ããŸããã å®éšã枬å®ã¯æéåã§ãããã枬å®ã¯ãæšæ¬èª¿æ»ã«ãªããŸãã å°ãªããšãn=3ãªããšãèªç±åºŠäžè¶³ãããçµ±èšçææ³ã¯äœ¿ããŸããã
éç Žå£è©Šéšã§ã¯ãå šæ°èª¿æ»ãã§ããŸããã ç Žå£è©Šéšã§ã¯ãååããã¡ã«ããŠããŸããŸããããå¿ ç¶çã«ãæšæ¬èª¿æ»ïŒæãåãè©ŠéšïŒã«ãªããŸãã
çš®é¡ | 説æ | ãµã€ãº | äŸ |
---|---|---|---|
ããŒã¿ | åã¬ã³ãŒã | çŽ | |
ããŒã¿ããŒã¹ | 1000ïœïŒïŒåã¬ã³ãŒã | å éšã¹ãã¬ãŒãž ã¯ã©ãŠã | |
ããŒã¿ãªããžã㪠| ã¯ã©ãŠã * ããŒã¿ã®ãªãŒãã³ã¢ã¯ã»ã¹ãç®æã | ||
ããã°ããŒã¿ | ããä»¥äž | ã¯ã©ãŠã |
ããã°ããŒã¿ã¯ã人éã§ã¯åŠçã§ãããã³ã³ãã¥ãŒã¿ã®å©ããåããŠåŠçããããžã¿ã«ããŒã¿ã®éåã§ãã ã³ã³ãã¥ãŒã¿ã®å©ããåããã«ã¯ãæ°åŠã ããã°ã©ãã³ã°èšèªã®ã¹ãã«ãå¿ é ã§ããæ°åŠã¯ãç¹ã«éåè«ã代æ°ã確ççµ±èšãªã©ã®ã¹ãã«ãèŠæ±ãããŸãã
ããã°ããŒã¿ã¯ãã¯ã©ãŠãäžã«é»åçãããã¯ç£æ°çãªæ¹æ³ã§ èšé²ãããŠããããã¹ãŠãçŽã«å°å·ããããšã¯äžå¯èœã§ãã ã€ãŸãããã¹ãŠãèŠã人ã¯ã誰ãããªããšããããšã§ãã
人ã¯ãã³ã³ãã¥ãŒã¿ã®å©ããåããŠãããã°ããŒã¿ã®äžéšãéžæããŠæœåºãããïŒæ€çŽ¢ïŒãå šäœã®åŸåãæœè±¡åããŠã¿ããïŒçµ±èšïŒããããšã«ãªããŸãã ãããèŠãŠãã¯ãããŠäººã¯ãææ決å®ããè¡åãèµ·ãããŸãã
èšãæããã°ãããã°ããŒã¿ã¯ããã®ãŸãŸã§ã¯ã æ å ± ã§ã¯ãããŸããã人ãã³ã³ãã¥ãŒã¿ã«ããã°ã©ã ãäžããããã°ããŒã¿ãåŠçããŠã¯ãããŠã人ã«æçšãª æ å ± ã«ãªãã®ã§ãã
*確çååž ã®ä»£è¡šå€ãšçšããããå€ã®äžã€ã«ã確çå€æ°ã®
æåŸ å€ ããããÏxiP(x)â«xiP(x)æ¯éå£ã ãã 確çååž ã§è¡šãããšããã㮠確çååž ã«åŸã 確çå€æ°ã®
æåŸ å€ ããã®æ¯éå£ã® æ¯å¹³å ãšåŒã¶ã15 )
çš®é¡ | äŸ | 説æ |
---|---|---|
ææžäœæ ã¯ãŒãã |
![]() |
è«æã å ±åæžããããã¯ãããã® èŠæšãªã©ã® ææžãäœæãå°å·ããã¢ããªã§ãã 16 ) |
è¡šèšç® | æ°å€ãèšç®ãã è¡š ã ã°ã©ããªã©ã®å³è¡šãäœæããã¢ããªã§ãã å¹³åã æšæºåå·®ãªã©ã®çµ±èšéãèšç®ã§ããŸãã ããŒã¿ ã®ä»¶æ°ã¯ 30件çšåºŠãŸã§ãé©åã§ãã ãã以äžã®ä»¶æ°ã®å ŽåãããŒã¿ããŒã¹ã¢ããªãšé£æºã㊠æœåºãã ããŒã¿ ã䜿ãæ¹ãå¹ççã§ãã | |
ðšâð« ãã¬ãŒã³ããŒã·ã§ã³ |
|
è¬æŒã¹ã©ã€ãã ãã¹ã¿ãŒãäœæã§ããŸãã 17 ) |
ã°ã©ãã£ãã¯ã¹ |
|
å³åœ¢ã å°å³ã åçãªã©ã® ç»åã®äœæãç·šéãããŸãã |
 | Solid works * | å³é¢ |
Autodesk AutoCAD Web | å³é¢ | |
çæ | Chat GPT Gemini | æç« ã ç»åã®çæãããŸãã |
ïŒ·ïœ ïœããŒãžäœæ | HTML editor | |
ããŒã¿ããŒã¹ | Microsoft Access Microsoft SQL Server | |
åç»ç·šé | ||
ðšâð« ããã°ã©ãã³ã° |
|
|
ããžãã¹ ã»ã°ã«ãŒããŠã§ã¢ |
|
ã¢ã㪠ã«ã¯ã ãªãã¬ãŒãã£ã³ã°ã·ã¹ãã (OS) äžã§åããã€ã³ã¹ããŒã«ã¢ããªãšã Webãã©ãŠã¶ äžã§åã Webã¢ããªããããŸã 18 ) ã
ã¢ã«ãŠã³ã ãæå¹åããŠã ãµãŒãã¹ã ã¢ã㪠ãå©çšããïŒãã°ã€ã³ããã°ãªã³ããµã€ã³ã€ã³ïŒã«ã¯ã èªèšŒãå¿ èŠã§ãã
äººæ° ããã°ã©ãã³ã°èšèª ã¯ãjava scriptããããŠpyton*ãšç¶ããŸãã *
ã¢ããªïŒ èšèª | ããã°ã©ã äŸ | ||
---|---|---|---|
SQL * | NEWID()ã䜿ã£ãŠãä¹±æ°ãçæãããœãŒãããŠäžäœããšãã select top(1) * from contents order by NEWID() | ||
Python * | randomã¢ãžã¥ãŒã«ã®sampleã¡ãœããã䜿ãã | ||
offce365 /Excel * | ã»ã«ã«RAND()ã䜿ã£ãŠãä¹±æ°ãçæãããœãŒãããŠäžäœããšãã åºæ¬çã«ã¯SQLãšåãèãæ¹ã Excel ã®ãã㪠衚èšç®ã¢ããªã®äžã§ãç¡äœçºæœåºãããã®ã¯çŸå®çã§ã¯ãªãã äºãããŒã¿ããŒã¹ã§æœåºãããšè¯ãã |
æ¯éå£ããæšæ¬ãæãåããšãã«ãå ¬å¹³ã§ãªããšæ¯éå£ã®å¹³åå€ãã°ãã€ããæ£ããæšæž¬ã§ããŸãã 19 ) ã è©Šææ¡åïŒãµã³ããªã³ã°ïŒã§ããã£ãšã簡䟿ãªã®ã¯ã äžæ§ä¹±æ° ã䜿ã£ãåçŽã©ã³ãã ãµã³ããªã³ã°ã§ãã
人æ°ãåäœæ°ã®ãããªæ¯éå£ãæ°ããããé¢æ£éåã§ããæ··å¡æ··åç©ã液äœãæ°äœé¢ç¶æ ã®ãããªïŒãã«ã¯ãããªã¢ã«ïŒæ°ããããªãé¢æ£éåã§ãã åçŽã©ã³ãã ãµã³ããªã³ã°ã簡䟿ã§ãã
åçŽã©ã³ãã ãµã³ããªã³ã°ã§ã¯ãæ¯éå£ã«çªå·ïŒïŒ©ïŒ€ïŒãã€ããäžæ§ä¹±æ°ã§æšæ¬ã決ããŸãã ä¹±æ°ã®çºçã¯ãäºæž¬äžå¯èœã§ãªããŠã¯ãªãããé«åºŠãªæ°åŠçæè¡ãèŠæ±ãããŸãã ã¯ã¬ãžããã«ãŒãã®çªå·ã®ãããªã»ãã¥ãªãã£ã«é¢ãããšããã§ã¯ãä¹±æ°ã®çºçæè¡ãã®ãã®ãã»ãã¥ãªãã£ã®å¯Ÿè±¡ã§ãã
èŠçŽ | æ°åŒ | ããã°ã©ãã³ã°èšèª | |
---|---|---|---|
C | python | ||
å€æ° |
public double x; |
||
é¢æ° |
double f(double x); |
||
é¢æ°ãšåŸå±å€æ° |
double f(double x) { return y; } |
||
å®çŸ©å |
|
C ã§ã¯ãVBã®selectæ§æã®ããã« switchæ§æã§ã¯ãå®çŸ©åãæå®ããããšã¯ã§ããŸããã çµå±ifæ§æããã¹ããããããšã«ãªããŸãã |
python
ã§ã¯ãswitchæ§æã¯ãããŸãããã
elifæ§æã§ãã¹ããããã«å®çŸ©åãæå®ã§ããŸãã
if x == 0: print('0') elif x < 0: print('è² ') elif x > 1: print('æ£') else: print('çºæ£') |
å |
for ( i = 1; i < n; i ++ ) { s += k[i]; } |
for i in range(1, n): s = s + k[i]* |
Phthon (ãã€ãœã³ïŒã¯ãå€æ§ãªããŒã¿æ§é ãçµã¿èŸŒãŸããŠããã®ã§ãããŒã¿åŠçããããèšèªä»æ§ã§ãã AnacondaïŒã¢ãã³ã³ãïŒããGoogle Colaboratoyãªã©ã®éçºç°å¢ããããŸãã Phthonã«ã¯ãæ°å€èšç®ã©ã€ãã©ãªNumPyããããŸãã NumPyã¯ãCããµFORTRANã§ãå®è£ ãããŠããŠãé«éã§å®è¡ã§ããŸãã ã»ãã«ããMatplotlib(ã°ã©ãæç»ã©ã€ãã©ãªïŒ pandas(ããŒã¿åæã©ã€ãã©ãªïŒ TensorFlow(æ©æ¢°åŠç¿ã©ã€ãã©ãªïŒãOpenCVïŒç»ååŠçã©ã€ãã©ãªïŒ ãªã©äŸ¿å©ãªã©ã€ãã©ãªãå€æ°ãããŸãã
å称 | ã°ã©ã | 説æ |
---|---|---|
ææ°é¢æ° |
|
python
+matplotlib
import numpy as np import math import matplotlib.pyplot as plt xy = [(p, math.exp(p)) for p in \ np.arange(start = - 2, stop = 2, step = 0.1)] z = [list(t) for t in zip(*xy)]; x = z[0]; y = z[1] fig, ax = plt.subplots() ax.plot(x, y) plt.show() |
éãã«ã³ã¹ã |
|
é»æ± ã®å æŸé»æ²ç·ã§çŸããŸãã |
確çæ²ç· |
|
|
æ£èŠååžé¢æ° |
|
確ççµ±èšã§å€çšãããŸãã å質管ç ã§ã倧åã§ãã |
æŠå¿µ | çš®é¡ | äŸ | |
---|---|---|---|
æ° | èªç¶æ° | 1,2 | |
æçæ° | -1ïŒæŽæ°ãè² æ°ïŒ,0.5ïŒå°æ°ïŒ,1/3ïŒåæ°ïŒ | ||
ç¡çæ° | â2ïŒç¡çæ°ïŒã¯ãæ ¹å·ãšæ°åã§è¡šçŸãããŸãã ÏïŒååšçïŒãeïŒããŒãã¢ã®åºïŒã¯æ°ãè¡šçŸããæåã§ãããæ°åã§ã¯ãããŸããã | ||
æ°å | ç®çšæ°å | 1234567890 | ã¢ã©ãã¢æ°åãã€ã³ãæ°åãšåŒã³åã«ã¯æŽå²ççµç·¯ããããŸãã 0ãšããæ°åã®çºæã«ãã * ãæ°å€ã«æ¡ïŒããžããïŒã®æŠå¿µãå°å ¥ãããèšç®ãèããæ©ããªããŸããã |
挢æ°å | äžäºäžå£±åŒå | ||
ããŒãæ°å | â ⠡⠢⠣⠀ | 11äžçŽ å人ãèšç®ã«äŸ¿å©ãªç®çšæ°åã䜿ãããšããŠãããšããã ã®ã«ããå ¬ææžã§ãã®äœ¿çšãçŠæ¢ããŸãã * ã | |
æ°å€ | æ°éãæ°åã§è¡šçŸ ïŒããžã¿ã«è¡šç€ºïŒ |
3.14,6.02Ã1023 | éãæ°ã«ããã«ã¯ã åäœ ãå¿ èŠã§ãã ãã ãã åäœ ã¯ã人ã決ãããã®ãªã®ã§ãç©çã®ç¯çã«ã¯ãããŸãã *ã æ°å€ã¯ã æ°åŒã«ä»£å ¥ããããšãã§ããŸãã éãšéãšã®é¢ä¿ãè¡šçŸããç©çã®é¢ä¿åŒã¯ã人ã決ãã åäœ ã«äŸåããªãã®ã§ã åäœ ãæžãã¹ãã§ã¯ãããŸããã |
æ°ãæ°åã§è¡šçŸããæ¹æ³ãšããŠãã¢ã©ãã¢æ°åã«ããäœåãèšæ°æ³ããããŸããïŒæ°ãæ å ±æè¡åºç€p.26ïŒ ã³ã³ãã¥ãŒã¿ã®å éšã§ã¯ã笊å·ä»ãæŽæ°ã å粟床浮åå°æ°ç¹æ°åïŒFP64-64bitïŒããªã©ãšããŠè¡šçŸãããŸãã
ããŒã¿ã¯ãææ³ãææ ãå«ãŸãªãã¡ãã£ã¢ã«ããžã¿ã«èšé²å¯èœãªè¡šçŸã§ãã
import numpy as np import matplotlib.pyplot as plt sm = 52.2 # å¹³åïŒæ¯å¹³åïŒ ss = 9.5 # æšæºåå·®ïŒæ¯æšæºåå·®ïŒ sn = 1000 # æ¯æ° x = np.random.normal(loc=sm, scale=ss, size=sn) plt.hist(x) plt.show()
çªå· | å€ | çªå· | å€ | çªå· | å€ | çªå· | å€ | çªå· | å€ |
---|---|---|---|---|---|---|---|---|---|
1 | 62.73 | 2 | 52.06 | 3 | 46.86 | 4 | 48.04 | 5 | 38.12 |
6 | 51.32 | 7 | 74.60 | 8 | 72.08 | 9 | 55.24 | 10 | 79.60 |
11 | 52.08 | 12 | 40.84 | 13 | 53.41 | 14 | 59.13 | 15 | 58.56 |
16 | 46.57 | 17 | 62.09 | 18 | 59.54 | 19 | 43.81 | 20 | 54.25 |
21 | 55.89 | 22 | 62.49 | 23 | 59.10 | 24 | 65.20 | 25 | 48.80 |
26 | 59.77 | 27 | 41.83 | 28 | 62.56 | 29 | 49.15 | 30 | 55.68 |
31 | 41.19 | 32 | 48.57 | 33 | 49.59 | 34 | 55.75 | 35 | 58.62 |
36 | 62.68 | 37 | 38.08 | 38 | 64.49 | 39 | 54.26 | 40 | 55.29 |
41 | 32.80 | 42 | 59.82 | 43 | 52.91 | 44 | 36.03 | 45 | 45.18 |
46 | 63.06 | 47 | 66.83 | 48 | 59.26 | 49 | 43.07 | 50 | 57.61 |
51 | 59.66 | 52 | 53.01 | 53 | 45.94 | 54 | 48.68 | 55 | 55.60 |
56 | 52.80 | 57 | 47.11 | 58 | 51.17 | 59 | 51.53 | 60 | 61.50 |
61 | 58.75 | 62 | 54.52 | 63 | 53.57 | 64 | 64.51 | 65 | 61.53 |
66 | 60.23 | 67 | 55.54 | 68 | 47.20 | 69 | 50.80 | 70 | 39.62 |
71 | 65.34 | 72 | 44.65 | 73 | 44.10 | 74 | 58.04 | 75 | 56.82 |
76 | 66.87 | 77 | 61.91 | 78 | 45.36 | 79 | 39.75 | 80 | 47.24 |
81 | 37.62 | 82 | 54.42 | 83 | 62.64 | 84 | 61.17 | 85 | 45.24 |
86 | 72.23 | 87 | 45.03 | 88 | 56.03 | 89 | 47.49 | 90 | 36.44 |
91 | 36.60 | 92 | 51.37 | 93 | 52.17 | 94 | 34.35 | 95 | 60.14 |
96 | 52.47 | 97 | 58.49 | 98 | 47.21 | 99 | 63.81 | 100 | 60.06 |
é ç® | å šæ°æ€æ»ïŒæ¯éå£ïŒ | æãåãæ€æ»ïŒæšæ¬ïŒ |
---|---|---|
æ° | æ¯æ°n=100 | æšæ¬æ°=8 |
å¹³å | æ¯å¹³å =53.55 | æšæ¬å¹³å= 55.37 |
æšæºåå·® | æ¯æšæºåå·®=9.28 | æšæ¬æšæºåå·®=13.55 |
åæ£(Variance) | æ¯åæ£=86.08 | äžååæ£=183.54 |
å差平æ¹å | =5,354.86 | =442.92 |
æšæ¬æšæºåå·®ã¯ãæ¯æšæºå差㮠äžåæšå®éã§ã¯ãªãããæ¯æšæºåå·®ã®æšå®ã¯ã è¿äŒŒçã«æšæ¬æšæºåå·®ã§è¡ãããšãå€ã 20 ) 21 ) ã
import numpy as np import matplotlib.pyplot as plt import random sm = 52.2 # å¹³åïŒæ¯å¹³åïŒ ss = 9.5 # æšæºåå·®ïŒæ¯æšæºåå·®ïŒ sn = 10000 # æ¯æ° en = 5 # æšæ¬æ° x = np.random.normal(loc=sm, scale=ss, size=sn) sampled = random.sample(x.tolist(), en) #ç¡äœçºæœåº fig = plt.figure() ax1 = fig.add_subplot(2, 1, 1) ax2 = fig.add_subplot(2, 1, 2) ax1.hist(x) ax2.hist(sampled) plt.show() average1 = np.mean(x) stdev1 = np.std(x) average2 = np.mean(sampled) stdev2 = np.std(sampled) print('inf',sm,ss) print(sn,average1,stdev1) print(en,average2,stdev2)
çš®é¡ | ååž | äŸ | ||
---|---|---|---|---|
é£ç¶ååž | ð± æ£èŠååž | |||
t-ååž | æ¯å¹³å ã®åºéæšå®ã æ¯å¹³åã®ææå·®æ€å® 22 ) (tæ€å®) | |||
|
æšæ¬æšæºåå·®s | |||
F-ååž | åæ£ã®æ¯ã æ¯åæ£ã®ææå·®æ€å®ïŒFæ€å®ïŒ 23 ) å®éšèšç»æ³ åæ£åæ | |||
äžæ§ååž | äžæ§ä¹±æ° | |||
察称äžè§ååž | ||||
ã¯ã€ãã«ååž | ||||
é¢æ£ååž | è¶ å¹Ÿäœååž | |||
ïŒé ååž | ||||
ãã¢ãœã³ååž | ||||
ååŠ | ãã«ããã³ååž | ãã¯ã¹ãŠã§ã«ãã«ããã³çµ±èš | ||
ãã§ã«ãååž | ãã§ã«ããã£ã©ãã¯çµ±èš | |||
ããŒãºååž | ããŒãºã¢ã€ã³ã·ã¥ã¿ã€ã³çµ±èš |
å¶ç¶ã«çŸããå€æ°ã確çå€æ°ãšèšããŸãã 確çå€æ°ãã©ã®ãããªç¢ºçã§çŸããããè¡šçŸãããã®ã確çååžãšãããŸãã
TRPG ã¯ãã¥ã«ãWEBãã€ã¹å¯Ÿæ°ã®åº | éåžžã®åäœ | JISããã³ISOãå®ããåäœ | åè |
---|---|---|---|
2 | ããã (bit) | ã·ã£ãã³ (shannon) | |
e | ããã (nat) | ããã (nat) | |
e | ãã£ãã (dit) | ããŒãã¬ãŒ (hartley) |
ã·ã£ãã³ã®çè«ã«ããã°ãæ å ±éã¯ã ãšã³ããããŒã§ãããå®éãæ å ±ã®éä¿¡ãç¶æã«ã¯ãç±ãšãã«ã®ãŒãçºçããã