🏠
令和6年12月22日 (日)

🔷 品質管理は管理図に始まり管理図に終わる

山形大学  理工学研究科(工学系)  化学・バイオ工学科  🔋 C1 📛 立花和宏

🔚 品質管理 🏫 Web Class syllabus 53225 📆 🌸 時間割 🕐 13:00~14:30 🕝 ( 中示BFiles C1 QC7つ道具ってどう使うの?

QC7つ道具

  1 QC七つ道具
手法 目的・特徴
データとグラフ 層別 1 )
パレート図
ヒストグラム 2 )
チェックシート * 5S活動の清掃チェックシート 研究室・実験室用巡視記録簿
要因・相関分析 特性要因図
散布図 * 3 ) 「特性」と「要因」との関係を調べたいときに使用します。 回帰分析
ばらつきの管理 管理図
DMAIC

新QC七つ道具では、言語情報を取りか使います。 テキストマイニングなどのWebアプリもあります。

統計的品質管理は、ある意味、製品 データから 情報を抽出する データサイエンスです。

4 ) 5 )

シューハート管理図

  1 シューハート管理図
©K.Tachibana

6 )


X_-R管理図


# ■■■ X_-R管理図 ■■■
import numpy as np
import random
import matplotlib.pyplot as plt

sm = 157
ss = 4.6 # 標準偏差(母標準偏差)
sn = 3 # 母数
r = 0.5 #相関係数

t = np.arange(7, 25, 1)
x = [ 0 for p in t]
R = [ 0 for p in t]
for j, p in enumerate(t):
  q = np.random.normal(loc=sm, scale=ss, size=sn)
  x[j] = np.mean(q)
  R[j] = np.max(q)-np.min(q)
cl = [ sm for p in t]
ucl = [ sm + ss * 3 for p in t]
lcl = [ sm - ss * 3 for p in t]
RB = [ ss  for p in t]
Rucl = [ ss * 4 for p in t]

plt.plot(t, cl)
plt.plot(t, ucl, linestyle="dotted")
plt.plot(t, lcl, linestyle="dotted")
plt.scatter(t, x)
plt.plot(t, x)

plt.plot(t, RB)
plt.plot(t, Rucl, linestyle="dotted")
plt.scatter(t, R)
plt.plot(t, R)
#plt.plot(t, R,linestyle="dotted")


# ■■■ X_-R管理図 ■■■


©K.Tachibana

充放電の上限電圧と下限電圧の例

  2   リチウムイオン電池 充放電の上限電圧と下限電圧の例
電圧 内容
危険 5.00 安全弁解放
4.25 保護回路作動電圧
注意 4.20 使用上限電圧
適性 4.15 カットオフ上限電圧
3.30 カットオフ下限電圧
注意 3.00 使用下限電圧
危険 2.40 保護回路作動電圧
🖱 電池の内部抵抗と充放電曲線

充電や放電での電池管理(BMS)では、 カットオフ電圧の検知が大切です。 カットオフ電圧が0.01V違うと、副反応のリスクが急激に増大します。 特に ADCの精度が低いと危険です。 電池の内部抵抗は、 正極、負極、電解質の 過電圧によります。

7 )


測定の信頼性と用語

  3 測定の信頼性と用語
用語 定義 備考
誤差 error
偶然誤差 random error 反復測定において、予測が不可能な変化をする測定誤差の成分
系統誤差 systematic error 反復測定において、一定のままであるかまたは予測可能な変化をする測定誤差の成分
ばらつき dispersion 測定値がそろっていあいこと。また、ふぞろいの程度。 偶然誤差とほぼ同義。
かたより bias 測定値の期待値と真値の差 系統誤差とほぼ同義。
不確かさ uncertainty 測定値に付随する、合理的に測定対象量にむすびづけられる値の広がりを特徴づけるパラメータ 知識の曖昧さも含む
反復 replicate 同一の測定対象量に対する測定を複数回行うこと 測定条件が同一かどうかによらない。 実験計画法では、ブロック単位での実験を指す。
繰り返し replicate 同一の測定対象量に対する測定手順、オペレータ、操作条件、場所が同一の、短期間での測定の反復 操作条件は、因子。繰り返し数は、標本数に相当する。
再現性 reproducibility 測定の再現条件下での測定の精密さ
精密さ precision 精度。 ばらつきの小ささを表す。
精確さ accuracy 確度
測定値 規定された測定手順に実施によって得られる 測定を反復するときは、個々の値、もしくは代表値(平均値や中央値など)のいずれも測定値と呼ぶ。
指示値 測定器が提示する

8 ) 9 )


母集団と標本の統計量

  4 21才女性の体重データの例
番号 番号 番号 番号 番号
1  52.30 2  62.09 3  68.38 4  62.49 5  45.27
6  45.58 7  51.65 8  41.77 9  56.10 10  47.85
11  43.17 12  37.26 13  42.35 14  51.69 15  44.03
16  63.15 17  70.49 18  57.49 19  36.99 20  62.62
21  50.07 22  44.40 23  40.68 24  47.86 25  56.22
26  53.30 27  65.79 28  71.00 29  46.70 30  46.02
31  63.42 32  47.53 33  58.74 34  54.69 35  61.29
36  45.32 37  47.98 38  53.11 39  60.49 40  42.54
41  55.51 42  57.78 43  48.45 44  44.92 45  61.86
46  52.31 47  59.35 48  60.58 49  59.84 50  58.12
51  62.53 52  59.75 53  60.24 54  50.16 55  45.67
56  65.70 57  50.38 58  56.40 59  57.84 60  53.22
61  51.64 62  54.65 63  61.62 64  49.43 65  57.66
66  74.05 67  59.28 68  55.34 69  42.24 70  44.04
71  49.01 72  48.85 73  65.00 74  50.07 75  45.68
76  39.33 77  46.10 78  75.26 79  38.03 80  55.42
81  47.08 82  51.70 83  57.90 84  47.27 85  62.98
86  41.41 87  45.28 88  61.82 89  53.64 90  53.82
91  44.06 92  57.47 93  58.78 94  69.86 95  51.58
96  39.78 97  36.82 98  57.17 99  57.50 100  62.71
  5 統計量
項目 全数検査(母集団) 抜き取り検査(標本)
母数n=100 標本数=15
平均 母平均 μ =53.42 標本平均=x_ 49.09
標準偏差 母標準偏差σ=8.72 標本標準偏差s=7.84
分散(Variance) 母分散σ2=75.99 不偏分散s2=61.51
偏差平方和 S=5,341.82 S=736.39

標本標準偏差は、母標準偏差の 不偏推定量ではないが、母標準偏差の推定は、 近似的に標本標準偏差で行うことが多い 10 ) 11 )


標準偏差

  6 標準偏差
アプリ言語 プログラム例
母標準偏差σ 標本標準偏差s
SQL * * select STDEVP(price) from products select STDEV(price) from products
Python 12 ) * print(np.std(df.Age))
print(np.std(df.Age, ddof=1))
std = statistics.stdev(data)
*
Google sheet * =STDEVP() =STDEV()
Excel * =STDEV.P()
=STDEVP()
=STDEV.S()
=STDEV()

母標準偏差は ギリシャ文字σ で表し、標本平均は、ラテン文字(ローマ字、アルファベット)の s で、表現することが多いです。

13 ) 14 ) 15 )


分散の有意差検定(F検定)

  2 分散の有意差検定(F検定)
python →cgi→ pngsvghtml
  3 分散の有意差検定( F検定)
python (colab)→ pngsvghtml

F検定は、ばらつきに違いがあるかどうか、分散の比を検定します 16 )

F検定は、 実験計画法で得られたデータの分散分析にも使います 17 )


参考文献

🏫 品質管理
q71
品質管理


QRコード
https://edu.yz.yamagata-u.ac.jp/Public/53225/53225_12.asp
名称: 教育用公開ウェブサービス
URL: 🔗 https://edu.yz.yamagata-u.ac.jp/
管理運用 山形大学 学術情報基盤センター

🎄🎂🌃🕯🎉
名称: サイバーキャンパス「鷹山」
URL: 🔗 http://amenity.yz.yamagata-u.ac.jp/
管理運用 山形大学 データベースアメニティ研究会
〒992-8510 山形県米沢市城南4丁目3-16

Copyright ©1996- 2024 Databese Amenity Laboratory of Virtual Research Institute,  Yamagata University All Rights Reserved.