🏠
令和8年2月17日 (火)
⇒#136@グラフ;

📈 (ID=7661)吸収光度と波長

136_(ID=7661)吸収光度と波長
👨‍🏫 0
import numpy as np
import matplotlib.pyplot as plt

#fig, ax = plt.subplots(figsize=(2.9, 2.1)) 
fig, ax = plt.subplots()

#----------------
#_📈_136_(ID=7661)吸収光度と波長
xy_136 = [(555.125000,137.875000) \
, (555.125000,138.000000) \
, (555.000000,138.000000) \
, (555.000000,138.125000) \
, (555.000000,138.125000) \
, (555.000000,138.125000) \
, (555.000000,138.250000) \
, (555.000000,138.375000) \
, (555.000000,138.500000) \
, (555.000000,138.750000) \
, (554.875000,139.000000) \
, (554.875000,139.125000) \
, (554.875000,139.375000) \
, (555.000000,139.625000) \
, (555.000000,139.875000) \
, (555.000000,140.125000) \
, (555.000000,140.500000) \
, (555.000000,140.750000) \
, (554.875000,141.125000) \
, (554.875000,141.250000) \
, (554.875000,141.375000) \
, (554.875000,141.500000) \
, (554.875000,141.750000) \
, (555.000000,142.000000) \
, (555.000000,142.250000) \
, (554.875000,142.500000) \
, (554.875000,142.875000) \
, (554.875000,143.250000) \
, (554.875000,143.500000) \
, (554.875000,143.875000) \
, (555.000000,144.125000) \
, (555.000000,144.375000) \
, (555.000000,144.750000) \
, (555.000000,145.125000) \
, (555.000000,145.375000) \
, (555.000000,145.875000) \
, (555.125000,146.375000) \
, (555.000000,146.750000) \
, (555.000000,147.250000) \
, (555.000000,147.625000) \
, (555.000000,148.000000) \
, (555.000000,148.375000) \
, (555.000000,148.750000) \
, (555.000000,149.000000) \
, (555.000000,149.250000) \
, (556.375000,159.625000) \
, (557.375000,172.375000) \
, (557.375000,172.625000) \
, (559.750000,194.375000) \
, (562.625000,212.375000) \
, (562.625000,212.625000) \
, (567.375000,250.875000) \
, (567.375000,250.875000) \
, (567.375000,251.000000) \
, (567.375000,251.000000) \
, (567.375000,251.000000) \
, (567.375000,251.125000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.250000,250.750000) \
, (567.250000,251.250000) \
, (567.125000,252.000000) \
, (567.125000,252.375000) \
, (567.000000,252.375000) \
, (567.000000,252.500000) \
, (567.000000,252.625000) \
, (567.000000,252.875000) \
, (567.000000,253.000000) \
, (567.000000,253.250000) \
, (567.000000,253.375000) \
, (567.000000,253.625000) \
, (567.125000,253.875000) \
, (567.125000,254.125000) \
, (567.125000,254.375000) \
, (567.250000,254.875000) \
, (567.250000,255.250000) \
, (567.250000,255.625000) \
, (567.375000,256.000000) \
, (567.375000,256.625000) \
, (567.375000,257.000000) \
, (567.375000,257.500000) \
, (567.375000,257.875000) \
, (567.375000,258.375000) \
, (567.375000,258.750000) \
, (567.375000,259.250000) \
, (567.500000,259.500000) \
, (567.500000,259.750000) \
, (567.625000,260.125000) \
, (567.750000,260.375000) \
, (567.750000,260.875000) \
, (567.750000,261.125000) \
, (567.750000,261.500000) \
, (567.750000,262.000000) \
, (567.875000,262.250000) \
, (568.000000,262.500000) \
, (568.000000,262.750000) \
, (568.000000,263.000000) \
, (568.125000,263.125000) \
, (568.125000,263.250000) \
, (568.125000,263.500000) \
, (570.625000,269.500000) \
, (573.875000,286.500000) \
, (575.750000,291.875000) \
, (576.500000,296.500000) \
, (576.625000,296.750000) \
, (577.750000,301.625000) \
, (580.625000,308.500000) \
, (584.500000,321.125000) \
, (585.875000,323.250000) \
, (587.875000,328.875000) \
, (587.875000,328.875000) \
, (590.625000,335.875000) \
, (590.375000,337.875000) \
, (591.875000,343.125000) \
, (592.125000,345.625000) \
, (594.375000,353.000000) \
, (594.750000,356.250000) \
, (595.750000,357.750000) \
, (595.750000,357.875000) \
, (597.250000,364.125000) \
, (599.125000,368.000000) \
, (603.875000,385.000000) \
, (606.250000,390.250000) \
, (608.125000,396.375000) \
, (608.250000,396.750000) \
, (611.000000,403.500000) \
, (612.750000,409.250000) \
, (615.500000,415.250000) \
, (617.125000,421.250000) \
, (617.125000,421.500000) \
, (619.000000,432.000000) \
, (620.000000,435.625000) \
, (622.750000,442.250000) \
, (627.000000,457.750000) \
, (627.125000,458.000000) \
, (630.125000,465.500000) \
, (638.750000,480.000000) \
, (642.000000,483.250000) \
, (647.000000,486.750000) \
, (646.875000,486.750000) \
, (652.375000,492.250000) \
, (655.125000,497.375000) \
, (657.750000,500.125000) \
, (658.000000,500.375000) \
, (664.000000,505.375000) \
, (671.375000,514.500000) \
, (674.875000,520.750000) \
, (677.500000,524.250000) \
, (679.625000,529.000000) \
, (679.750000,529.125000) \
, (680.750000,530.875000) \
, (685.875000,535.750000) \
, (690.875000,537.500000) \
, (696.000000,540.000000) \
, (697.875000,540.375000) \
, (700.625000,543.375000) \
, (700.750000,543.500000) \
, (700.875000,543.625000) \
, (700.875000,543.625000) \
, (700.875000,543.625000) \
, (700.875000,543.625000) \
, (700.875000,543.625000) \
, (701.000000,543.625000) \
, (701.000000,543.625000) \
, (701.125000,543.625000) \
, (701.125000,543.750000) \
, (701.250000,543.750000) \
, (701.250000,543.750000) \
, (701.250000,543.750000) \
, (701.375000,543.750000) \
, (701.375000,543.750000) \
, (701.500000,543.625000) \
, (701.500000,543.625000) \
, (701.625000,543.625000) \
, (701.625000,543.750000) \
, (701.500000,543.500000) \
, (705.125000,545.500000) \
, (708.500000,545.750000) \
, (708.750000,545.875000) \
, (714.125000,546.750000) \
, (722.250000,549.875000) \
, (724.500000,550.375000) \
, (725.750000,550.000000) \
, (727.750000,550.250000) \
, (736.250000,553.375000) \
, (737.500000,553.125000) \
, (737.750000,553.125000) \
, (742.375000,553.375000) \
, (746.500000,554.250000) \
, (749.500000,555.875000) \
, (755.000000,557.875000) \
, (755.125000,557.875000) \
, (760.875000,558.875000) \
, (760.625000,558.875000) \
, (,) \
, (62.875000,57.875000) \
, (62.500000,57.875000) \
, (,) \
]
z_136 = [list(t) for t in zip(*xy_136)]; x_136 = z_136[0]; y_136 = z_136[1]

ax.scatter(x_136, y_136)
ax.plot(x_136, y_136)
ax.annotate('ID=136' \
, xy=(np.mean(x_136),np.mean(y_136)) \
, xytext=(np.mean(x_136)+ np.std(y_136), np.mean(y_136) + np.std(y_136)) \
, arrowprops=dict(arrowstyle="->"))
#----------------

plt.show()
  1 python コード

A4 (210 × 297mm)あるいは少し大きめのレターサイズ(215.9 × 279.4ミリ)が一般的です。 2 カラムとすると 3.34645669291339インチ程度。 アスペクトを 4:3にすれば、2.9インチ×2.1インチぐらいの図が論文投稿の図として適切です。


サーバーサイドスクリプト

  2 (ID=7661)吸収光度と波長

サーバーサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 サーバーサイドでダイナミックに生成している画像なので、ダウンロードだけでなく、リンクもできます。


クライアントサイドスクリプト

  3 canvas (ID=7661)吸収光度と波長

クライアントサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 クライアントサイドでダイナミックに生成している画像なので、ダウンロードはできますが、リンクはできません。


  4 google chart APIを使った描画

  5 (ID=7661)吸収光度と波長

xmin0
xmax1000
ymin0
ymax1000
555.125000,137.875000 555.125000,138.000000 555.000000,138.000000 555.000000,138.125000 555.000000,138.125000 555.000000,138.125000 555.000000,138.250000 555.000000,138.375000 555.000000,138.500000 555.000000,138.750000 554.875000,139.000000 554.875000,139.125000 554.875000,139.375000 555.000000,139.625000 555.000000,139.875000 555.000000,140.125000 555.000000,140.500000 555.000000,140.750000 554.875000,141.125000 554.875000,141.250000 554.875000,141.375000 554.875000,141.500000 554.875000,141.750000 555.000000,142.000000 555.000000,142.250000 554.875000,142.500000 554.875000,142.875000 554.875000,143.250000 554.875000,143.500000 554.875000,143.875000 555.000000,144.125000 555.000000,144.375000 555.000000,144.750000 555.000000,145.125000 555.000000,145.375000 555.000000,145.875000 555.125000,146.375000 555.000000,146.750000 555.000000,147.250000 555.000000,147.625000 555.000000,148.000000 555.000000,148.375000 555.000000,148.750000 555.000000,149.000000 555.000000,149.250000 556.375000,159.625000 557.375000,172.375000 557.375000,172.625000 559.750000,194.375000 562.625000,212.375000 562.625000,212.625000 567.375000,250.875000 567.375000,250.875000 567.375000,251.000000 567.375000,251.000000 567.375000,251.000000 567.375000,251.125000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.375000,250.625000 567.250000,250.750000 567.250000,251.250000 567.125000,252.000000 567.125000,252.375000 567.000000,252.375000 567.000000,252.500000 567.000000,252.625000 567.000000,252.875000 567.000000,253.000000 567.000000,253.250000 567.000000,253.375000 567.000000,253.625000 567.125000,253.875000 567.125000,254.125000 567.125000,254.375000 567.250000,254.875000 567.250000,255.250000 567.250000,255.625000 567.375000,256.000000 567.375000,256.625000 567.375000,257.000000 567.375000,257.500000 567.375000,257.875000 567.375000,258.375000 567.375000,258.750000 567.375000,259.250000 567.500000,259.500000 567.500000,259.750000 567.625000,260.125000 567.750000,260.375000 567.750000,260.875000 567.750000,261.125000 567.750000,261.500000 567.750000,262.000000 567.875000,262.250000 568.000000,262.500000 568.000000,262.750000 568.000000,263.000000 568.125000,263.125000 568.125000,263.250000 568.125000,263.500000 570.625000,269.500000 573.875000,286.500000 575.750000,291.875000 576.500000,296.500000 576.625000,296.750000 577.750000,301.625000 580.625000,308.500000 584.500000,321.125000 585.875000,323.250000 587.875000,328.875000 587.875000,328.875000 590.625000,335.875000 590.375000,337.875000 591.875000,343.125000 592.125000,345.625000 594.375000,353.000000 594.750000,356.250000 595.750000,357.750000 595.750000,357.875000 597.250000,364.125000 599.125000,368.000000 603.875000,385.000000 606.250000,390.250000 608.125000,396.375000 608.250000,396.750000 611.000000,403.500000 612.750000,409.250000 615.500000,415.250000 617.125000,421.250000 617.125000,421.500000 619.000000,432.000000 620.000000,435.625000 622.750000,442.250000 627.000000,457.750000 627.125000,458.000000 630.125000,465.500000 638.750000,480.000000 642.000000,483.250000 647.000000,486.750000 646.875000,486.750000 652.375000,492.250000 655.125000,497.375000 657.750000,500.125000 658.000000,500.375000 664.000000,505.375000 671.375000,514.500000 674.875000,520.750000 677.500000,524.250000 679.625000,529.000000 679.750000,529.125000 680.750000,530.875000 685.875000,535.750000 690.875000,537.500000 696.000000,540.000000 697.875000,540.375000 700.625000,543.375000 700.750000,543.500000 700.875000,543.625000 700.875000,543.625000 700.875000,543.625000 700.875000,543.625000 700.875000,543.625000 701.000000,543.625000 701.000000,543.625000 701.125000,543.625000 701.125000,543.750000 701.250000,543.750000 701.250000,543.750000 701.250000,543.750000 701.375000,543.750000 701.375000,543.750000 701.500000,543.625000 701.500000,543.625000 701.625000,543.625000 701.625000,543.750000 701.500000,543.500000 705.125000,545.500000 708.500000,545.750000 708.750000,545.875000 714.125000,546.750000 722.250000,549.875000 724.500000,550.375000 725.750000,550.000000 727.750000,550.250000 736.250000,553.375000 737.500000,553.125000 737.750000,553.125000 742.375000,553.375000 746.500000,554.250000 749.500000,555.875000 755.000000,557.875000 755.125000,557.875000 760.875000,558.875000 760.625000,558.875000 62.875000,57.875000 62.500000,57.875000

,[555.125000,137.875000 ],[555.125000,138.000000 ],[555.000000,138.000000 ],[555.000000,138.125000 ],[555.000000,138.125000 ],[555.000000,138.125000 ],[555.000000,138.250000 ],[555.000000,138.375000 ],[555.000000,138.500000 ],[555.000000,138.750000 ],[554.875000,139.000000 ],[554.875000,139.125000 ],[554.875000,139.375000 ],[555.000000,139.625000 ],[555.000000,139.875000 ],[555.000000,140.125000 ],[555.000000,140.500000 ],[555.000000,140.750000 ],[554.875000,141.125000 ],[554.875000,141.250000 ],[554.875000,141.375000 ],[554.875000,141.500000 ],[554.875000,141.750000 ],[555.000000,142.000000 ],[555.000000,142.250000 ],[554.875000,142.500000 ],[554.875000,142.875000 ],[554.875000,143.250000 ],[554.875000,143.500000 ],[554.875000,143.875000 ],[555.000000,144.125000 ],[555.000000,144.375000 ],[555.000000,144.750000 ],[555.000000,145.125000 ],[555.000000,145.375000 ],[555.000000,145.875000 ],[555.125000,146.375000 ],[555.000000,146.750000 ],[555.000000,147.250000 ],[555.000000,147.625000 ],[555.000000,148.000000 ],[555.000000,148.375000 ],[555.000000,148.750000 ],[555.000000,149.000000 ],[555.000000,149.250000 ],[556.375000,159.625000 ],[557.375000,172.375000 ],[557.375000,172.625000 ],[559.750000,194.375000 ],[562.625000,212.375000 ],[562.625000,212.625000 ],[567.375000,250.875000 ],[567.375000,250.875000 ],[567.375000,251.000000 ],[567.375000,251.000000 ],[567.375000,251.000000 ],[567.375000,251.125000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.250000,250.750000 ],[567.250000,251.250000 ],[567.125000,252.000000 ],[567.125000,252.375000 ],[567.000000,252.375000 ],[567.000000,252.500000 ],[567.000000,252.625000 ],[567.000000,252.875000 ],[567.000000,253.000000 ],[567.000000,253.250000 ],[567.000000,253.375000 ],[567.000000,253.625000 ],[567.125000,253.875000 ],[567.125000,254.125000 ],[567.125000,254.375000 ],[567.250000,254.875000 ],[567.250000,255.250000 ],[567.250000,255.625000 ],[567.375000,256.000000 ],[567.375000,256.625000 ],[567.375000,257.000000 ],[567.375000,257.500000 ],[567.375000,257.875000 ],[567.375000,258.375000 ],[567.375000,258.750000 ],[567.375000,259.250000 ],[567.500000,259.500000 ],[567.500000,259.750000 ],[567.625000,260.125000 ],[567.750000,260.375000 ],[567.750000,260.875000 ],[567.750000,261.125000 ],[567.750000,261.500000 ],[567.750000,262.000000 ],[567.875000,262.250000 ],[568.000000,262.500000 ],[568.000000,262.750000 ],[568.000000,263.000000 ],[568.125000,263.125000 ],[568.125000,263.250000 ],[568.125000,263.500000 ],[570.625000,269.500000 ],[573.875000,286.500000 ],[575.750000,291.875000 ],[576.500000,296.500000 ],[576.625000,296.750000 ],[577.750000,301.625000 ],[580.625000,308.500000 ],[584.500000,321.125000 ],[585.875000,323.250000 ],[587.875000,328.875000 ],[587.875000,328.875000 ],[590.625000,335.875000 ],[590.375000,337.875000 ],[591.875000,343.125000 ],[592.125000,345.625000 ],[594.375000,353.000000 ],[594.750000,356.250000 ],[595.750000,357.750000 ],[595.750000,357.875000 ],[597.250000,364.125000 ],[599.125000,368.000000 ],[603.875000,385.000000 ],[606.250000,390.250000 ],[608.125000,396.375000 ],[608.250000,396.750000 ],[611.000000,403.500000 ],[612.750000,409.250000 ],[615.500000,415.250000 ],[617.125000,421.250000 ],[617.125000,421.500000 ],[619.000000,432.000000 ],[620.000000,435.625000 ],[622.750000,442.250000 ],[627.000000,457.750000 ],[627.125000,458.000000 ],[630.125000,465.500000 ],[638.750000,480.000000 ],[642.000000,483.250000 ],[647.000000,486.750000 ],[646.875000,486.750000 ],[652.375000,492.250000 ],[655.125000,497.375000 ],[657.750000,500.125000 ],[658.000000,500.375000 ],[664.000000,505.375000 ],[671.375000,514.500000 ],[674.875000,520.750000 ],[677.500000,524.250000 ],[679.625000,529.000000 ],[679.750000,529.125000 ],[680.750000,530.875000 ],[685.875000,535.750000 ],[690.875000,537.500000 ],[696.000000,540.000000 ],[697.875000,540.375000 ],[700.625000,543.375000 ],[700.750000,543.500000 ],[700.875000,543.625000 ],[700.875000,543.625000 ],[700.875000,543.625000 ],[700.875000,543.625000 ],[700.875000,543.625000 ],[701.000000,543.625000 ],[701.000000,543.625000 ],[701.125000,543.625000 ],[701.125000,543.750000 ],[701.250000,543.750000 ],[701.250000,543.750000 ],[701.250000,543.750000 ],[701.375000,543.750000 ],[701.375000,543.750000 ],[701.500000,543.625000 ],[701.500000,543.625000 ],[701.625000,543.625000 ],[701.625000,543.750000 ],[701.500000,543.500000 ],[705.125000,545.500000 ],[708.500000,545.750000 ],[708.750000,545.875000 ],[714.125000,546.750000 ],[722.250000,549.875000 ],[724.500000,550.375000 ],[725.750000,550.000000 ],[727.750000,550.250000 ],[736.250000,553.375000 ],[737.500000,553.125000 ],[737.750000,553.125000 ],[742.375000,553.375000 ],[746.500000,554.250000 ],[749.500000,555.875000 ],[755.000000,557.875000 ],[755.125000,557.875000 ],[760.875000,558.875000 ],[760.625000,558.875000 ],[ ],[62.875000,57.875000 ],[62.500000,57.875000 ],[ ],[]

図形と関数

  1 図形と関数
名称 グラフ 説明
指数関数
python + matplotlib
import numpy as np
import math
import matplotlib.pyplot as plt

xy = [(p, math.exp(p)) for p in \
      np.arange(start = - 2, stop = 2, step = 0.1)]
z = [list(t) for t in zip(*xy)]; x = z[0]; y = z[1]

fig, ax = plt.subplots()
ax.plot(x, y)

plt.show()
逆ネルンスト 電池の充放電曲線で現れます。
確率曲線
正規分布関数 確率統計で多用されます。 品質管理 でも大切です。

数式の例

  2 数式の例
数式 意味 説明
y = a x + b 一次関数 直線

数に量の意味はありません。 変数 には、x,y,zのようにアルファベットの後ろの方を使い 定数には、a,b,cのようにアルファベットの前の方を使います。 デカルト座標系では、 図形を表します。 座標の数に量を割り当てたものをグラフやチャートと呼びます。

p V = n R T
気体の状態方程式 1662~1802 左辺 pV仕事、 右辺nRTが熱量で、 エネルギー収支を表す量方程式です。 量方程式なので量を単位で割った数値を代入したり求めたりします。
E = E0 - RT nF ln K
ネルンストの式 1889
S = k B ln W
ボルツマンの式 1877

数式には、インドアラビア数字、 ラテン文字ギリシャ文字、記号など多くの文字が現れます。 文字の多くは、数を表現します。量を数で表現している場合もあります。

数式は、量との量の関係を表現しているので、グラフにできます。

数式で数値を求めるときは、量を単位で割ってから代入します。このような数式を量方程式あるいは 量式*と言います。 単位が指定された数式を 数値方程式 と言います。単位の定義が変わると 数値方程式 の係数も変わります。 文献に記載された 数値方程式 を使う場合は、単位の定義がいつのものなのかを確認する必要があります。

コンピュータ上では直接数式を表現できないため、 TeXを使います。 MathMLを使います。

👨‍🏫 数式の表現、量の表現 👨‍🏫 ウルフラムアルファ(WolframAlpha) 👨‍🏫 計算式のページ(フォーム)
<!-- 図図図図図 図図図図図 -->
<figure>
<img src="https://a.yamagata-u.ac.jp/amenity/Laboratory/xyGraphImage.aspx?id=136" />
<figcaption>
<a href="https://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Laboratory/Plot/Plot_Index.asp">Fig</a> <a href="https://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Laboratory/Plot/@Plot.asp?nxyGraphID=136"> (ID=7661)吸収光度と波長 </a>
<div> </div>
</figcaption>
</figure>
<!-- 図図図図図 図図図図図 -->

動画、音声及び写真を含む図表等を転載する場合には転載許諾書による同意があった方が無難です。 動画、音声及び写真を含む図表等の転載許諾書


QRコード
https://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Laboratory/Plot/@Plot.asp?nxyGraphID=136
名称: 教育用公開ウェブサービス
URL: 🔗 https://edu.yz.yamagata-u.ac.jp/
管理運用 山形大学 学術情報基盤センター

🎄🎂🌃🕯🎉
名称: サイバーキャンパス「鷹山」
URL: 🔗 http://amenity.yz.yamagata-u.ac.jp/
管理運用 山形大学 データベースアメニティ研究会
〒992-8510 山形県米沢市城南4丁目3-16

Copyright ©1996- 2026 Databese Amenity Laboratory of Virtual Research Institute,  Yamagata University All Rights Reserved.