🏠
import numpy as np
import matplotlib.pyplot as plt
#fig, ax = plt.subplots(figsize=(2.9, 2.1))
fig, ax = plt.subplots()
#----------------
#_📈_136_(ID=7661)吸収光度と波長
xy_136 = [(555.125000,137.875000) \
, (555.125000,138.000000) \
, (555.000000,138.000000) \
, (555.000000,138.125000) \
, (555.000000,138.125000) \
, (555.000000,138.125000) \
, (555.000000,138.250000) \
, (555.000000,138.375000) \
, (555.000000,138.500000) \
, (555.000000,138.750000) \
, (554.875000,139.000000) \
, (554.875000,139.125000) \
, (554.875000,139.375000) \
, (555.000000,139.625000) \
, (555.000000,139.875000) \
, (555.000000,140.125000) \
, (555.000000,140.500000) \
, (555.000000,140.750000) \
, (554.875000,141.125000) \
, (554.875000,141.250000) \
, (554.875000,141.375000) \
, (554.875000,141.500000) \
, (554.875000,141.750000) \
, (555.000000,142.000000) \
, (555.000000,142.250000) \
, (554.875000,142.500000) \
, (554.875000,142.875000) \
, (554.875000,143.250000) \
, (554.875000,143.500000) \
, (554.875000,143.875000) \
, (555.000000,144.125000) \
, (555.000000,144.375000) \
, (555.000000,144.750000) \
, (555.000000,145.125000) \
, (555.000000,145.375000) \
, (555.000000,145.875000) \
, (555.125000,146.375000) \
, (555.000000,146.750000) \
, (555.000000,147.250000) \
, (555.000000,147.625000) \
, (555.000000,148.000000) \
, (555.000000,148.375000) \
, (555.000000,148.750000) \
, (555.000000,149.000000) \
, (555.000000,149.250000) \
, (556.375000,159.625000) \
, (557.375000,172.375000) \
, (557.375000,172.625000) \
, (559.750000,194.375000) \
, (562.625000,212.375000) \
, (562.625000,212.625000) \
, (567.375000,250.875000) \
, (567.375000,250.875000) \
, (567.375000,251.000000) \
, (567.375000,251.000000) \
, (567.375000,251.000000) \
, (567.375000,251.125000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.375000,250.625000) \
, (567.250000,250.750000) \
, (567.250000,251.250000) \
, (567.125000,252.000000) \
, (567.125000,252.375000) \
, (567.000000,252.375000) \
, (567.000000,252.500000) \
, (567.000000,252.625000) \
, (567.000000,252.875000) \
, (567.000000,253.000000) \
, (567.000000,253.250000) \
, (567.000000,253.375000) \
, (567.000000,253.625000) \
, (567.125000,253.875000) \
, (567.125000,254.125000) \
, (567.125000,254.375000) \
, (567.250000,254.875000) \
, (567.250000,255.250000) \
, (567.250000,255.625000) \
, (567.375000,256.000000) \
, (567.375000,256.625000) \
, (567.375000,257.000000) \
, (567.375000,257.500000) \
, (567.375000,257.875000) \
, (567.375000,258.375000) \
, (567.375000,258.750000) \
, (567.375000,259.250000) \
, (567.500000,259.500000) \
, (567.500000,259.750000) \
, (567.625000,260.125000) \
, (567.750000,260.375000) \
, (567.750000,260.875000) \
, (567.750000,261.125000) \
, (567.750000,261.500000) \
, (567.750000,262.000000) \
, (567.875000,262.250000) \
, (568.000000,262.500000) \
, (568.000000,262.750000) \
, (568.000000,263.000000) \
, (568.125000,263.125000) \
, (568.125000,263.250000) \
, (568.125000,263.500000) \
, (570.625000,269.500000) \
, (573.875000,286.500000) \
, (575.750000,291.875000) \
, (576.500000,296.500000) \
, (576.625000,296.750000) \
, (577.750000,301.625000) \
, (580.625000,308.500000) \
, (584.500000,321.125000) \
, (585.875000,323.250000) \
, (587.875000,328.875000) \
, (587.875000,328.875000) \
, (590.625000,335.875000) \
, (590.375000,337.875000) \
, (591.875000,343.125000) \
, (592.125000,345.625000) \
, (594.375000,353.000000) \
, (594.750000,356.250000) \
, (595.750000,357.750000) \
, (595.750000,357.875000) \
, (597.250000,364.125000) \
, (599.125000,368.000000) \
, (603.875000,385.000000) \
, (606.250000,390.250000) \
, (608.125000,396.375000) \
, (608.250000,396.750000) \
, (611.000000,403.500000) \
, (612.750000,409.250000) \
, (615.500000,415.250000) \
, (617.125000,421.250000) \
, (617.125000,421.500000) \
, (619.000000,432.000000) \
, (620.000000,435.625000) \
, (622.750000,442.250000) \
, (627.000000,457.750000) \
, (627.125000,458.000000) \
, (630.125000,465.500000) \
, (638.750000,480.000000) \
, (642.000000,483.250000) \
, (647.000000,486.750000) \
, (646.875000,486.750000) \
, (652.375000,492.250000) \
, (655.125000,497.375000) \
, (657.750000,500.125000) \
, (658.000000,500.375000) \
, (664.000000,505.375000) \
, (671.375000,514.500000) \
, (674.875000,520.750000) \
, (677.500000,524.250000) \
, (679.625000,529.000000) \
, (679.750000,529.125000) \
, (680.750000,530.875000) \
, (685.875000,535.750000) \
, (690.875000,537.500000) \
, (696.000000,540.000000) \
, (697.875000,540.375000) \
, (700.625000,543.375000) \
, (700.750000,543.500000) \
, (700.875000,543.625000) \
, (700.875000,543.625000) \
, (700.875000,543.625000) \
, (700.875000,543.625000) \
, (700.875000,543.625000) \
, (701.000000,543.625000) \
, (701.000000,543.625000) \
, (701.125000,543.625000) \
, (701.125000,543.750000) \
, (701.250000,543.750000) \
, (701.250000,543.750000) \
, (701.250000,543.750000) \
, (701.375000,543.750000) \
, (701.375000,543.750000) \
, (701.500000,543.625000) \
, (701.500000,543.625000) \
, (701.625000,543.625000) \
, (701.625000,543.750000) \
, (701.500000,543.500000) \
, (705.125000,545.500000) \
, (708.500000,545.750000) \
, (708.750000,545.875000) \
, (714.125000,546.750000) \
, (722.250000,549.875000) \
, (724.500000,550.375000) \
, (725.750000,550.000000) \
, (727.750000,550.250000) \
, (736.250000,553.375000) \
, (737.500000,553.125000) \
, (737.750000,553.125000) \
, (742.375000,553.375000) \
, (746.500000,554.250000) \
, (749.500000,555.875000) \
, (755.000000,557.875000) \
, (755.125000,557.875000) \
, (760.875000,558.875000) \
, (760.625000,558.875000) \
, (,) \
, (62.875000,57.875000) \
, (62.500000,57.875000) \
, (,) \
]
z_136 = [list(t) for t in zip(*xy_136)]; x_136 = z_136[0]; y_136 = z_136[1]
ax.scatter(x_136, y_136)
ax.plot(x_136, y_136)
ax.annotate('ID=136' \
, xy=(np.mean(x_136),np.mean(y_136)) \
, xytext=(np.mean(x_136)+ np.std(y_136), np.mean(y_136) + np.std(y_136)) \
, arrowprops=dict(arrowstyle="->"))
#----------------
plt.show()
A4 (210 × 297mm)あるいは少し大きめのレターサイズ(215.9 × 279.4ミリ)が一般的です。 2 カラムとすると 3.34645669291339インチ程度。 アスペクトを 4:3にすれば、2.9インチ×2.1インチぐらいの図が論文投稿の図として適切です。
サーバーサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 サーバーサイドでダイナミックに生成している画像なので、ダウンロードだけでなく、リンクもできます。
クライアントサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 クライアントサイドでダイナミックに生成している画像なので、ダウンロードはできますが、リンクはできません。
| xmin | 0 |
| xmax | 1000 |
| ymin | 0 |
| ymax | 1000 |
,[555.125000,137.875000 ],[555.125000,138.000000 ],[555.000000,138.000000 ],[555.000000,138.125000 ],[555.000000,138.125000 ],[555.000000,138.125000 ],[555.000000,138.250000 ],[555.000000,138.375000 ],[555.000000,138.500000 ],[555.000000,138.750000 ],[554.875000,139.000000 ],[554.875000,139.125000 ],[554.875000,139.375000 ],[555.000000,139.625000 ],[555.000000,139.875000 ],[555.000000,140.125000 ],[555.000000,140.500000 ],[555.000000,140.750000 ],[554.875000,141.125000 ],[554.875000,141.250000 ],[554.875000,141.375000 ],[554.875000,141.500000 ],[554.875000,141.750000 ],[555.000000,142.000000 ],[555.000000,142.250000 ],[554.875000,142.500000 ],[554.875000,142.875000 ],[554.875000,143.250000 ],[554.875000,143.500000 ],[554.875000,143.875000 ],[555.000000,144.125000 ],[555.000000,144.375000 ],[555.000000,144.750000 ],[555.000000,145.125000 ],[555.000000,145.375000 ],[555.000000,145.875000 ],[555.125000,146.375000 ],[555.000000,146.750000 ],[555.000000,147.250000 ],[555.000000,147.625000 ],[555.000000,148.000000 ],[555.000000,148.375000 ],[555.000000,148.750000 ],[555.000000,149.000000 ],[555.000000,149.250000 ],[556.375000,159.625000 ],[557.375000,172.375000 ],[557.375000,172.625000 ],[559.750000,194.375000 ],[562.625000,212.375000 ],[562.625000,212.625000 ],[567.375000,250.875000 ],[567.375000,250.875000 ],[567.375000,251.000000 ],[567.375000,251.000000 ],[567.375000,251.000000 ],[567.375000,251.125000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.375000,250.625000 ],[567.250000,250.750000 ],[567.250000,251.250000 ],[567.125000,252.000000 ],[567.125000,252.375000 ],[567.000000,252.375000 ],[567.000000,252.500000 ],[567.000000,252.625000 ],[567.000000,252.875000 ],[567.000000,253.000000 ],[567.000000,253.250000 ],[567.000000,253.375000 ],[567.000000,253.625000 ],[567.125000,253.875000 ],[567.125000,254.125000 ],[567.125000,254.375000 ],[567.250000,254.875000 ],[567.250000,255.250000 ],[567.250000,255.625000 ],[567.375000,256.000000 ],[567.375000,256.625000 ],[567.375000,257.000000 ],[567.375000,257.500000 ],[567.375000,257.875000 ],[567.375000,258.375000 ],[567.375000,258.750000 ],[567.375000,259.250000 ],[567.500000,259.500000 ],[567.500000,259.750000 ],[567.625000,260.125000 ],[567.750000,260.375000 ],[567.750000,260.875000 ],[567.750000,261.125000 ],[567.750000,261.500000 ],[567.750000,262.000000 ],[567.875000,262.250000 ],[568.000000,262.500000 ],[568.000000,262.750000 ],[568.000000,263.000000 ],[568.125000,263.125000 ],[568.125000,263.250000 ],[568.125000,263.500000 ],[570.625000,269.500000 ],[573.875000,286.500000 ],[575.750000,291.875000 ],[576.500000,296.500000 ],[576.625000,296.750000 ],[577.750000,301.625000 ],[580.625000,308.500000 ],[584.500000,321.125000 ],[585.875000,323.250000 ],[587.875000,328.875000 ],[587.875000,328.875000 ],[590.625000,335.875000 ],[590.375000,337.875000 ],[591.875000,343.125000 ],[592.125000,345.625000 ],[594.375000,353.000000 ],[594.750000,356.250000 ],[595.750000,357.750000 ],[595.750000,357.875000 ],[597.250000,364.125000 ],[599.125000,368.000000 ],[603.875000,385.000000 ],[606.250000,390.250000 ],[608.125000,396.375000 ],[608.250000,396.750000 ],[611.000000,403.500000 ],[612.750000,409.250000 ],[615.500000,415.250000 ],[617.125000,421.250000 ],[617.125000,421.500000 ],[619.000000,432.000000 ],[620.000000,435.625000 ],[622.750000,442.250000 ],[627.000000,457.750000 ],[627.125000,458.000000 ],[630.125000,465.500000 ],[638.750000,480.000000 ],[642.000000,483.250000 ],[647.000000,486.750000 ],[646.875000,486.750000 ],[652.375000,492.250000 ],[655.125000,497.375000 ],[657.750000,500.125000 ],[658.000000,500.375000 ],[664.000000,505.375000 ],[671.375000,514.500000 ],[674.875000,520.750000 ],[677.500000,524.250000 ],[679.625000,529.000000 ],[679.750000,529.125000 ],[680.750000,530.875000 ],[685.875000,535.750000 ],[690.875000,537.500000 ],[696.000000,540.000000 ],[697.875000,540.375000 ],[700.625000,543.375000 ],[700.750000,543.500000 ],[700.875000,543.625000 ],[700.875000,543.625000 ],[700.875000,543.625000 ],[700.875000,543.625000 ],[700.875000,543.625000 ],[701.000000,543.625000 ],[701.000000,543.625000 ],[701.125000,543.625000 ],[701.125000,543.750000 ],[701.250000,543.750000 ],[701.250000,543.750000 ],[701.250000,543.750000 ],[701.375000,543.750000 ],[701.375000,543.750000 ],[701.500000,543.625000 ],[701.500000,543.625000 ],[701.625000,543.625000 ],[701.625000,543.750000 ],[701.500000,543.500000 ],[705.125000,545.500000 ],[708.500000,545.750000 ],[708.750000,545.875000 ],[714.125000,546.750000 ],[722.250000,549.875000 ],[724.500000,550.375000 ],[725.750000,550.000000 ],[727.750000,550.250000 ],[736.250000,553.375000 ],[737.500000,553.125000 ],[737.750000,553.125000 ],[742.375000,553.375000 ],[746.500000,554.250000 ],[749.500000,555.875000 ],[755.000000,557.875000 ],[755.125000,557.875000 ],[760.875000,558.875000 ],[760.625000,558.875000 ],[ ],[62.875000,57.875000 ],[62.500000,57.875000 ],[ ],[]
| 名称 | グラフ | 説明 |
|---|---|---|
| 指数関数 |
|
python
+
matplotlib
|
| 逆ネルンスト |
|
電池の充放電曲線で現れます。 |
| 確率曲線 |
|
|
| 正規分布関数 |
|
確率統計で多用されます。 品質管理 でも大切です。 |
| 数式 | 意味 | 説明 |
|---|---|---|
| 一次関数 直線 |
数に量の意味はありません。 変数 には、x,y,zのようにアルファベットの後ろの方を使い 定数には、a,b,cのようにアルファベットの前の方を使います。 デカルト座標系では、 図形を表します。 座標の数に量を割り当てたものをグラフやチャートと呼びます。 |
|
|
|
気体の状態方程式 1662~1802 | 左辺 pV が 仕事、 右辺nRTが熱量で、 エネルギー収支を表す量方程式です。 量方程式なので量を単位で割った数値を代入したり求めたりします。 |
|
|
ネルンストの式 1889 | |
|
|
ボルツマンの式 1877 |
数式には、インドアラビア数字、 ラテン文字、 ギリシャ文字、記号など多くの文字が現れます。 文字の多くは、数を表現します。量を数で表現している場合もあります。
数式は、量との量の関係を表現しているので、グラフにできます。
数式で数値を求めるときは、量を単位で割ってから代入します。このような数式を量方程式あるいは 量式*と言います。 単位が指定された数式を 数値方程式 と言います。単位の定義が変わると 数値方程式 の係数も変わります。 文献に記載された 数値方程式 を使う場合は、単位の定義がいつのものなのかを確認する必要があります。
コンピュータ上では直接数式を表現できないため、 TeXを使います。 MathMLを使います。
👨🏫 数式の表現、量の表現 👨🏫 ウルフラムアルファ(WolframAlpha) 👨🏫 計算式のページ(フォーム)動画、音声及び写真を含む図表等を転載する場合には転載許諾書による同意があった方が無難です。 動画、音声及び写真を含む図表等の転載許諾書