🏠
令和8年2月19日 (木)
⇒#131@グラフ;

📈 (ID=7587)

131_(ID=7587)
👨‍🏫 0
import numpy as np
import matplotlib.pyplot as plt

#fig, ax = plt.subplots(figsize=(2.9, 2.1)) 
fig, ax = plt.subplots()

#----------------
#_📈_131_(ID=7587)
xy_131 = [(80.750000,352.500000) \
, (81.375000,351.625000) \
, (81.625000,351.625000) \
, (81.875000,351.875000) \
, (82.125000,353.000000) \
, (82.500000,356.625000) \
, (83.125000,384.625000) \
, (83.500000,389.500000) \
, (83.750000,392.500000) \
, (84.125000,394.500000) \
, (84.625000,395.000000) \
, (,) \
, (121.125000,361.875000) \
, (120.625000,360.125000) \
, (121.250000,358.375000) \
, (122.250000,356.750000) \
, (124.625000,355.000000) \
, (127.000000,354.875000) \
, (129.625000,355.750000) \
, (132.125000,358.250000) \
, (133.750000,362.375000) \
, (134.000000,367.500000) \
, (132.875000,372.875000) \
, (127.625000,383.250000) \
, (121.500000,390.625000) \
, (118.500000,393.375000) \
, (122.875000,393.375000) \
, (139.625000,391.750000) \
, (140.250000,391.875000) \
, (141.000000,392.125000) \
, (,) \
, (174.875000,361.500000) \
, (173.500000,359.750000) \
, (173.375000,359.000000) \
, (173.875000,358.250000) \
, (175.500000,357.125000) \
, (178.375000,356.000000) \
, (181.500000,356.125000) \
, (184.500000,357.250000) \
, (186.750000,359.375000) \
, (188.125000,361.875000) \
, (188.375000,364.750000) \
, (187.750000,367.250000) \
, (186.000000,369.875000) \
, (183.750000,372.125000) \
, (179.125000,375.625000) \
, (177.750000,376.000000) \
, (180.375000,376.000000) \
, (185.875000,379.000000) \
, (188.875000,382.250000) \
, (191.250000,385.750000) \
, (192.000000,388.125000) \
, (191.500000,389.875000) \
, (190.000000,391.750000) \
, (187.875000,393.250000) \
, (181.875000,394.750000) \
, (178.750000,394.750000) \
, (176.625000,394.125000) \
, (175.500000,392.875000) \
, (175.375000,390.750000) \
, (178.000000,387.750000) \
, (,) \
, (230.875000,365.375000) \
, (229.125000,364.000000) \
, (228.375000,363.500000) \
, (227.750000,363.500000) \
, (226.250000,366.375000) \
, (225.500000,369.625000) \
, (225.625000,373.000000) \
, (227.250000,375.625000) \
, (230.250000,378.000000) \
, (234.625000,380.125000) \
, (244.500000,382.625000) \
, (248.250000,383.000000) \
, (250.875000,382.750000) \
, (252.125000,382.375000) \
, (252.500000,382.000000) \
, (,) \
, (249.750000,363.875000) \
, (249.125000,363.500000) \
, (249.375000,364.125000) \
, (249.000000,366.875000) \
, (242.125000,394.500000) \
, (241.625000,399.250000) \
, (242.250000,402.625000) \
, (,) \
, (286.000000,365.625000) \
, (285.625000,364.625000) \
, (285.625000,364.500000) \
, (285.375000,364.750000) \
, (283.875000,368.500000) \
, (282.625000,372.625000) \
, (282.250000,376.375000) \
, (284.125000,383.125000) \
, (288.500000,391.250000) \
, (288.500000,394.625000) \
, (287.625000,396.250000) \
, (285.250000,398.875000) \
, (282.375000,399.750000) \
, (280.125000,399.375000) \
, (277.875000,397.875000) \
, (275.750000,394.000000) \
, (,) \
, (272.500000,383.875000) \
, (271.875000,381.000000) \
, (272.500000,379.375000) \
, (273.625000,378.125000) \
, (278.875000,376.250000) \
, (283.750000,375.500000) \
, (289.875000,375.375000) \
, (296.750000,375.375000) \
, (304.125000,375.500000) \
, (,) \
, (335.250000,365.125000) \
, (333.000000,365.750000) \
, (328.375000,373.125000) \
, (323.125000,385.750000) \
, (321.875000,391.500000) \
, (322.125000,395.625000) \
, (323.625000,398.250000) \
, (326.250000,399.500000) \
, (330.000000,398.750000) \
, (333.750000,396.125000) \
, (336.875000,393.250000) \
, (337.750000,391.375000) \
, (337.625000,389.250000) \
, (336.250000,386.375000) \
, (333.625000,383.375000) \
, (330.500000,381.000000) \
, (327.125000,379.375000) \
, (324.375000,378.500000) \
, (323.500000,378.500000) \
, (,) \
, (375.375000,366.125000) \
, (374.500000,365.500000) \
, (374.500000,366.375000) \
, (374.375000,369.875000) \
, (374.500000,372.000000) \
, (374.625000,373.875000) \
, (374.625000,375.375000) \
, (,) \
, (375.375000,374.875000) \
, (375.375000,373.625000) \
, (375.625000,372.000000) \
, (376.375000,370.375000) \
, (378.375000,368.375000) \
, (385.250000,365.000000) \
, (389.250000,364.250000) \
, (392.750000,364.625000) \
, (395.875000,366.250000) \
, (398.250000,369.500000) \
, (399.500000,374.125000) \
, (399.375000,379.500000) \
, (397.500000,385.500000) \
, (392.750000,395.875000) \
, (390.875000,399.000000) \
, (390.250000,401.000000) \
, (390.875000,401.250000) \
, (,) \
, (421.125000,372.625000) \
, (419.625000,370.375000) \
, (420.750000,369.000000) \
, (423.625000,367.250000) \
, (427.875000,366.125000) \
, (431.875000,365.750000) \
, (434.500000,366.500000) \
, (435.875000,368.125000) \
, (436.125000,371.375000) \
, (429.250000,389.625000) \
, (429.000000,395.250000) \
, (430.250000,399.625000) \
, (432.375000,402.250000) \
, (434.750000,403.500000) \
, (437.625000,403.750000) \
, (440.375000,402.750000) \
, (442.625000,401.000000) \
, (443.625000,399.625000) \
, (443.750000,398.125000) \
, (443.000000,395.250000) \
, (440.500000,391.625000) \
, (436.250000,387.500000) \
, (421.000000,375.250000) \
, (418.875000,372.250000) \
, (418.250000,369.250000) \
, (,) \
, (503.875000,384.750000) \
, (501.500000,380.125000) \
, (499.375000,375.625000) \
, (496.125000,371.625000) \
, (492.875000,369.875000) \
, (490.125000,369.875000) \
, (487.375000,373.500000) \
, (487.000000,375.500000) \
, (487.500000,376.875000) \
, (489.125000,377.625000) \
, (491.500000,377.750000) \
, (497.625000,376.750000) \
, (497.750000,378.625000) \
, (496.375000,383.875000) \
, (485.875000,414.375000) \
, (483.875000,422.125000) \
, (,) \
, (526.500000,378.625000) \
, (525.500000,376.500000) \
, (525.125000,376.625000) \
, (524.250000,378.000000) \
, (522.000000,383.125000) \
, (519.875000,391.125000) \
, (519.250000,399.375000) \
, (520.875000,406.500000) \
, (525.125000,411.375000) \
, (531.000000,414.375000) \
, (538.500000,414.375000) \
, (546.875000,411.875000) \
, (554.750000,407.625000) \
, (560.875000,402.000000) \
, (564.250000,395.250000) \
, (565.125000,387.250000) \
, (562.875000,379.500000) \
, (558.625000,373.000000) \
, (551.750000,367.750000) \
, (543.250000,364.125000) \
, (534.375000,363.125000) \
, (525.500000,364.500000) \
, (519.625000,366.875000) \
, (,) \
, (53.250000,67.250000) \
, (51.000000,67.250000) \
, (50.625000,67.500000) \
, (50.875000,67.500000) \
, (53.500000,65.500000) \
, (61.625000,56.625000) \
, (,) \
]
z_131 = [list(t) for t in zip(*xy_131)]; x_131 = z_131[0]; y_131 = z_131[1]

ax.scatter(x_131, y_131)
ax.plot(x_131, y_131)
ax.annotate('ID=131' \
, xy=(np.mean(x_131),np.mean(y_131)) \
, xytext=(np.mean(x_131)+ np.std(y_131), np.mean(y_131) + np.std(y_131)) \
, arrowprops=dict(arrowstyle="->"))
#----------------

plt.show()
  1 python コード

A4 (210 × 297mm)あるいは少し大きめのレターサイズ(215.9 × 279.4ミリ)が一般的です。 2 カラムとすると 3.34645669291339インチ程度。 アスペクトを 4:3にすれば、2.9インチ×2.1インチぐらいの図が論文投稿の図として適切です。


サーバーサイドスクリプト

  2 (ID=7587)

サーバーサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 サーバーサイドでダイナミックに生成している画像なので、ダウンロードだけでなく、リンクもできます。


クライアントサイドスクリプト

  3 canvas (ID=7587)

クライアントサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 クライアントサイドでダイナミックに生成している画像なので、ダウンロードはできますが、リンクはできません。


  4 google chart APIを使った描画

  5 (ID=7587)

xmin0
xmax1000
ymin0
ymax1000
80.750000,352.500000 81.375000,351.625000 81.625000,351.625000 81.875000,351.875000 82.125000,353.000000 82.500000,356.625000 83.125000,384.625000 83.500000,389.500000 83.750000,392.500000 84.125000,394.500000 84.625000,395.000000 121.125000,361.875000 120.625000,360.125000 121.250000,358.375000 122.250000,356.750000 124.625000,355.000000 127.000000,354.875000 129.625000,355.750000 132.125000,358.250000 133.750000,362.375000 134.000000,367.500000 132.875000,372.875000 127.625000,383.250000 121.500000,390.625000 118.500000,393.375000 122.875000,393.375000 139.625000,391.750000 140.250000,391.875000 141.000000,392.125000 174.875000,361.500000 173.500000,359.750000 173.375000,359.000000 173.875000,358.250000 175.500000,357.125000 178.375000,356.000000 181.500000,356.125000 184.500000,357.250000 186.750000,359.375000 188.125000,361.875000 188.375000,364.750000 187.750000,367.250000 186.000000,369.875000 183.750000,372.125000 179.125000,375.625000 177.750000,376.000000 180.375000,376.000000 185.875000,379.000000 188.875000,382.250000 191.250000,385.750000 192.000000,388.125000 191.500000,389.875000 190.000000,391.750000 187.875000,393.250000 181.875000,394.750000 178.750000,394.750000 176.625000,394.125000 175.500000,392.875000 175.375000,390.750000 178.000000,387.750000 230.875000,365.375000 229.125000,364.000000 228.375000,363.500000 227.750000,363.500000 226.250000,366.375000 225.500000,369.625000 225.625000,373.000000 227.250000,375.625000 230.250000,378.000000 234.625000,380.125000 244.500000,382.625000 248.250000,383.000000 250.875000,382.750000 252.125000,382.375000 252.500000,382.000000 249.750000,363.875000 249.125000,363.500000 249.375000,364.125000 249.000000,366.875000 242.125000,394.500000 241.625000,399.250000 242.250000,402.625000 286.000000,365.625000 285.625000,364.625000 285.625000,364.500000 285.375000,364.750000 283.875000,368.500000 282.625000,372.625000 282.250000,376.375000 284.125000,383.125000 288.500000,391.250000 288.500000,394.625000 287.625000,396.250000 285.250000,398.875000 282.375000,399.750000 280.125000,399.375000 277.875000,397.875000 275.750000,394.000000 272.500000,383.875000 271.875000,381.000000 272.500000,379.375000 273.625000,378.125000 278.875000,376.250000 283.750000,375.500000 289.875000,375.375000 296.750000,375.375000 304.125000,375.500000 335.250000,365.125000 333.000000,365.750000 328.375000,373.125000 323.125000,385.750000 321.875000,391.500000 322.125000,395.625000 323.625000,398.250000 326.250000,399.500000 330.000000,398.750000 333.750000,396.125000 336.875000,393.250000 337.750000,391.375000 337.625000,389.250000 336.250000,386.375000 333.625000,383.375000 330.500000,381.000000 327.125000,379.375000 324.375000,378.500000 323.500000,378.500000 375.375000,366.125000 374.500000,365.500000 374.500000,366.375000 374.375000,369.875000 374.500000,372.000000 374.625000,373.875000 374.625000,375.375000 375.375000,374.875000 375.375000,373.625000 375.625000,372.000000 376.375000,370.375000 378.375000,368.375000 385.250000,365.000000 389.250000,364.250000 392.750000,364.625000 395.875000,366.250000 398.250000,369.500000 399.500000,374.125000 399.375000,379.500000 397.500000,385.500000 392.750000,395.875000 390.875000,399.000000 390.250000,401.000000 390.875000,401.250000 421.125000,372.625000 419.625000,370.375000 420.750000,369.000000 423.625000,367.250000 427.875000,366.125000 431.875000,365.750000 434.500000,366.500000 435.875000,368.125000 436.125000,371.375000 429.250000,389.625000 429.000000,395.250000 430.250000,399.625000 432.375000,402.250000 434.750000,403.500000 437.625000,403.750000 440.375000,402.750000 442.625000,401.000000 443.625000,399.625000 443.750000,398.125000 443.000000,395.250000 440.500000,391.625000 436.250000,387.500000 421.000000,375.250000 418.875000,372.250000 418.250000,369.250000 503.875000,384.750000 501.500000,380.125000 499.375000,375.625000 496.125000,371.625000 492.875000,369.875000 490.125000,369.875000 487.375000,373.500000 487.000000,375.500000 487.500000,376.875000 489.125000,377.625000 491.500000,377.750000 497.625000,376.750000 497.750000,378.625000 496.375000,383.875000 485.875000,414.375000 483.875000,422.125000 526.500000,378.625000 525.500000,376.500000 525.125000,376.625000 524.250000,378.000000 522.000000,383.125000 519.875000,391.125000 519.250000,399.375000 520.875000,406.500000 525.125000,411.375000 531.000000,414.375000 538.500000,414.375000 546.875000,411.875000 554.750000,407.625000 560.875000,402.000000 564.250000,395.250000 565.125000,387.250000 562.875000,379.500000 558.625000,373.000000 551.750000,367.750000 543.250000,364.125000 534.375000,363.125000 525.500000,364.500000 519.625000,366.875000 53.250000,67.250000 51.000000,67.250000 50.625000,67.500000 50.875000,67.500000 53.500000,65.500000 61.625000,56.625000

,[80.750000,352.500000 ],[81.375000,351.625000 ],[81.625000,351.625000 ],[81.875000,351.875000 ],[82.125000,353.000000 ],[82.500000,356.625000 ],[83.125000,384.625000 ],[83.500000,389.500000 ],[83.750000,392.500000 ],[84.125000,394.500000 ],[84.625000,395.000000 ],[ ],[121.125000,361.875000 ],[120.625000,360.125000 ],[121.250000,358.375000 ],[122.250000,356.750000 ],[124.625000,355.000000 ],[127.000000,354.875000 ],[129.625000,355.750000 ],[132.125000,358.250000 ],[133.750000,362.375000 ],[134.000000,367.500000 ],[132.875000,372.875000 ],[127.625000,383.250000 ],[121.500000,390.625000 ],[118.500000,393.375000 ],[122.875000,393.375000 ],[139.625000,391.750000 ],[140.250000,391.875000 ],[141.000000,392.125000 ],[ ],[174.875000,361.500000 ],[173.500000,359.750000 ],[173.375000,359.000000 ],[173.875000,358.250000 ],[175.500000,357.125000 ],[178.375000,356.000000 ],[181.500000,356.125000 ],[184.500000,357.250000 ],[186.750000,359.375000 ],[188.125000,361.875000 ],[188.375000,364.750000 ],[187.750000,367.250000 ],[186.000000,369.875000 ],[183.750000,372.125000 ],[179.125000,375.625000 ],[177.750000,376.000000 ],[180.375000,376.000000 ],[185.875000,379.000000 ],[188.875000,382.250000 ],[191.250000,385.750000 ],[192.000000,388.125000 ],[191.500000,389.875000 ],[190.000000,391.750000 ],[187.875000,393.250000 ],[181.875000,394.750000 ],[178.750000,394.750000 ],[176.625000,394.125000 ],[175.500000,392.875000 ],[175.375000,390.750000 ],[178.000000,387.750000 ],[ ],[230.875000,365.375000 ],[229.125000,364.000000 ],[228.375000,363.500000 ],[227.750000,363.500000 ],[226.250000,366.375000 ],[225.500000,369.625000 ],[225.625000,373.000000 ],[227.250000,375.625000 ],[230.250000,378.000000 ],[234.625000,380.125000 ],[244.500000,382.625000 ],[248.250000,383.000000 ],[250.875000,382.750000 ],[252.125000,382.375000 ],[252.500000,382.000000 ],[ ],[249.750000,363.875000 ],[249.125000,363.500000 ],[249.375000,364.125000 ],[249.000000,366.875000 ],[242.125000,394.500000 ],[241.625000,399.250000 ],[242.250000,402.625000 ],[ ],[286.000000,365.625000 ],[285.625000,364.625000 ],[285.625000,364.500000 ],[285.375000,364.750000 ],[283.875000,368.500000 ],[282.625000,372.625000 ],[282.250000,376.375000 ],[284.125000,383.125000 ],[288.500000,391.250000 ],[288.500000,394.625000 ],[287.625000,396.250000 ],[285.250000,398.875000 ],[282.375000,399.750000 ],[280.125000,399.375000 ],[277.875000,397.875000 ],[275.750000,394.000000 ],[ ],[272.500000,383.875000 ],[271.875000,381.000000 ],[272.500000,379.375000 ],[273.625000,378.125000 ],[278.875000,376.250000 ],[283.750000,375.500000 ],[289.875000,375.375000 ],[296.750000,375.375000 ],[304.125000,375.500000 ],[ ],[335.250000,365.125000 ],[333.000000,365.750000 ],[328.375000,373.125000 ],[323.125000,385.750000 ],[321.875000,391.500000 ],[322.125000,395.625000 ],[323.625000,398.250000 ],[326.250000,399.500000 ],[330.000000,398.750000 ],[333.750000,396.125000 ],[336.875000,393.250000 ],[337.750000,391.375000 ],[337.625000,389.250000 ],[336.250000,386.375000 ],[333.625000,383.375000 ],[330.500000,381.000000 ],[327.125000,379.375000 ],[324.375000,378.500000 ],[323.500000,378.500000 ],[ ],[375.375000,366.125000 ],[374.500000,365.500000 ],[374.500000,366.375000 ],[374.375000,369.875000 ],[374.500000,372.000000 ],[374.625000,373.875000 ],[374.625000,375.375000 ],[ ],[375.375000,374.875000 ],[375.375000,373.625000 ],[375.625000,372.000000 ],[376.375000,370.375000 ],[378.375000,368.375000 ],[385.250000,365.000000 ],[389.250000,364.250000 ],[392.750000,364.625000 ],[395.875000,366.250000 ],[398.250000,369.500000 ],[399.500000,374.125000 ],[399.375000,379.500000 ],[397.500000,385.500000 ],[392.750000,395.875000 ],[390.875000,399.000000 ],[390.250000,401.000000 ],[390.875000,401.250000 ],[ ],[421.125000,372.625000 ],[419.625000,370.375000 ],[420.750000,369.000000 ],[423.625000,367.250000 ],[427.875000,366.125000 ],[431.875000,365.750000 ],[434.500000,366.500000 ],[435.875000,368.125000 ],[436.125000,371.375000 ],[429.250000,389.625000 ],[429.000000,395.250000 ],[430.250000,399.625000 ],[432.375000,402.250000 ],[434.750000,403.500000 ],[437.625000,403.750000 ],[440.375000,402.750000 ],[442.625000,401.000000 ],[443.625000,399.625000 ],[443.750000,398.125000 ],[443.000000,395.250000 ],[440.500000,391.625000 ],[436.250000,387.500000 ],[421.000000,375.250000 ],[418.875000,372.250000 ],[418.250000,369.250000 ],[ ],[503.875000,384.750000 ],[501.500000,380.125000 ],[499.375000,375.625000 ],[496.125000,371.625000 ],[492.875000,369.875000 ],[490.125000,369.875000 ],[487.375000,373.500000 ],[487.000000,375.500000 ],[487.500000,376.875000 ],[489.125000,377.625000 ],[491.500000,377.750000 ],[497.625000,376.750000 ],[497.750000,378.625000 ],[496.375000,383.875000 ],[485.875000,414.375000 ],[483.875000,422.125000 ],[ ],[526.500000,378.625000 ],[525.500000,376.500000 ],[525.125000,376.625000 ],[524.250000,378.000000 ],[522.000000,383.125000 ],[519.875000,391.125000 ],[519.250000,399.375000 ],[520.875000,406.500000 ],[525.125000,411.375000 ],[531.000000,414.375000 ],[538.500000,414.375000 ],[546.875000,411.875000 ],[554.750000,407.625000 ],[560.875000,402.000000 ],[564.250000,395.250000 ],[565.125000,387.250000 ],[562.875000,379.500000 ],[558.625000,373.000000 ],[551.750000,367.750000 ],[543.250000,364.125000 ],[534.375000,363.125000 ],[525.500000,364.500000 ],[519.625000,366.875000 ],[ ],[53.250000,67.250000 ],[51.000000,67.250000 ],[50.625000,67.500000 ],[50.875000,67.500000 ],[53.500000,65.500000 ],[61.625000,56.625000 ],[ ],[]

図形と関数

  1 図形と関数
名称 グラフ 説明
指数関数
python + matplotlib
import numpy as np
import math
import matplotlib.pyplot as plt

xy = [(p, math.exp(p)) for p in \
      np.arange(start = - 2, stop = 2, step = 0.1)]
z = [list(t) for t in zip(*xy)]; x = z[0]; y = z[1]

fig, ax = plt.subplots()
ax.plot(x, y)

plt.show()
逆ネルンスト 電池の充放電曲線で現れます。
確率曲線
正規分布関数 確率統計で多用されます。 品質管理 でも大切です。

数式の例

  2 数式の例
数式 意味 説明
y = a x + b 一次関数 直線

数に量の意味はありません。 変数 には、x,y,zのようにアルファベットの後ろの方を使い 定数には、a,b,cのようにアルファベットの前の方を使います。 デカルト座標系では、 図形を表します。 座標の数に量を割り当てたものをグラフやチャートと呼びます。

p V = n R T
気体の状態方程式 1662~1802 左辺 pV仕事、 右辺nRTが熱量で、 エネルギー収支を表す量方程式です。 量方程式なので量を単位で割った数値を代入したり求めたりします。
E = E0 - RT nF ln K
ネルンストの式 1889
S = k B ln W
ボルツマンの式 1877

数式には、インドアラビア数字、 ラテン文字ギリシャ文字、記号など多くの文字が現れます。 文字の多くは、数を表現します。量を数で表現している場合もあります。

数式は、量との量の関係を表現しているので、グラフにできます。

数式で数値を求めるときは、量を単位で割ってから代入します。このような数式を量方程式あるいは 量式*と言います。 単位が指定された数式を 数値方程式 と言います。単位の定義が変わると 数値方程式 の係数も変わります。 文献に記載された 数値方程式 を使う場合は、単位の定義がいつのものなのかを確認する必要があります。

コンピュータ上では直接数式を表現できないため、 TeXを使います。 MathMLを使います。

👨‍🏫 数式の表現、量の表現 👨‍🏫 ウルフラムアルファ(WolframAlpha) 👨‍🏫 計算式のページ(フォーム)
<!-- 図図図図図 図図図図図 -->
<figure>
<img src="https://a.yamagata-u.ac.jp/amenity/Laboratory/xyGraphImage.aspx?id=131" />
<figcaption>
<a href="https://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Laboratory/Plot/Plot_Index.asp">Fig</a> <a href="https://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Laboratory/Plot/@Plot.asp?nxyGraphID=131"> (ID=7587) </a>
<div> </div>
</figcaption>
</figure>
<!-- 図図図図図 図図図図図 -->

動画、音声及び写真を含む図表等を転載する場合には転載許諾書による同意があった方が無難です。 動画、音声及び写真を含む図表等の転載許諾書


QRコード
https://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Laboratory/Plot/@Plot.asp?nxyGraphID=131
名称: 教育用公開ウェブサービス
URL: 🔗 https://edu.yz.yamagata-u.ac.jp/
管理運用 山形大学 学術情報基盤センター

🎄🎂🌃🕯🎉
名称: サイバーキャンパス「鷹山」
URL: 🔗 http://amenity.yz.yamagata-u.ac.jp/
管理運用 山形大学 データベースアメニティ研究会
〒992-8510 山形県米沢市城南4丁目3-16

Copyright ©1996- 2026 Databese Amenity Laboratory of Virtual Research Institute,  Yamagata University All Rights Reserved.