🏠
import numpy as np
import matplotlib.pyplot as plt
#fig, ax = plt.subplots(figsize=(2.9, 2.1))
fig, ax = plt.subplots()
#----------------
#_📈_129_まーる
xy_129 = [(81.375000,347.875000) \
, (84.125000,338.750000) \
, (87.750000,323.750000) \
, (91.875000,311.750000) \
, (92.750000,311.750000) \
, (94.750000,312.875000) \
, (97.500000,316.875000) \
, (99.250000,323.750000) \
, (102.250000,340.500000) \
, (102.250000,344.375000) \
, (101.000000,345.250000) \
, (,) \
, (93.000000,335.125000) \
, (91.750000,334.500000) \
, (94.250000,333.250000) \
, (103.250000,330.000000) \
, (,) \
, (118.500000,318.750000) \
, (118.625000,317.625000) \
, (121.125000,315.625000) \
, (130.125000,310.500000) \
, (130.125000,309.500000) \
, (128.750000,309.000000) \
, (127.625000,310.250000) \
, (127.250000,312.625000) \
, (127.500000,316.000000) \
, (129.750000,326.375000) \
, (130.250000,331.875000) \
, (130.000000,335.875000) \
, (129.000000,338.125000) \
, (127.250000,339.125000) \
, (124.875000,339.000000) \
, (122.500000,337.875000) \
, (120.250000,335.000000) \
, (,) \
, (142.500000,312.500000) \
, (150.625000,314.250000) \
, (156.875000,315.750000) \
, (166.750000,319.500000) \
, (166.625000,318.750000) \
, (,) \
, (165.125000,308.250000) \
, (164.500000,307.000000) \
, (163.500000,307.500000) \
, (156.250000,320.500000) \
, (154.500000,325.375000) \
, (154.375000,329.750000) \
, (,) \
, (180.250000,317.500000) \
, (183.250000,317.750000) \
, (,) \
, (221.625000,320.250000) \
, (217.500000,316.875000) \
, (215.250000,311.625000) \
, (215.625000,306.750000) \
, (218.625000,303.250000) \
, (224.500000,299.750000) \
, (231.125000,298.250000) \
, (237.125000,299.625000) \
, (240.500000,303.375000) \
, (240.625000,307.625000) \
, (238.125000,312.125000) \
, (234.125000,316.375000) \
, (229.625000,319.500000) \
, (226.250000,320.875000) \
, (225.000000,320.750000) \
, (,) \
, (255.000000,314.750000) \
, (251.375000,314.000000) \
, (248.125000,312.750000) \
, (246.000000,310.250000) \
, (245.625000,306.750000) \
, (247.125000,301.500000) \
, (250.750000,296.125000) \
, (255.375000,293.000000) \
, (260.000000,292.375000) \
, (264.875000,294.125000) \
, (269.750000,299.125000) \
, (272.500000,305.375000) \
, (272.250000,312.250000) \
, (269.375000,318.625000) \
, (266.000000,323.250000) \
, (262.625000,326.750000) \
, (,) \
, (286.875000,325.625000) \
, (283.625000,324.500000) \
, (280.875000,322.750000) \
, (279.250000,319.750000) \
, (279.750000,315.125000) \
, (281.875000,307.500000) \
, (285.750000,299.250000) \
, (290.750000,294.625000) \
, (295.375000,293.250000) \
, (299.250000,294.500000) \
, (301.375000,298.125000) \
, (301.000000,303.125000) \
, (297.375000,308.375000) \
, (287.500000,317.750000) \
, (,) \
, (323.750000,311.875000) \
, (321.375000,310.875000) \
, (324.000000,309.750000) \
, (329.750000,308.750000) \
, (338.250000,308.125000) \
, (,) \
, (371.000000,321.250000) \
, (366.375000,319.375000) \
, (363.625000,316.625000) \
, (363.125000,312.000000) \
, (364.750000,305.625000) \
, (368.500000,300.375000) \
, (373.125000,297.375000) \
, (377.625000,296.500000) \
, (381.125000,297.625000) \
, (383.625000,300.875000) \
, (384.375000,305.750000) \
, (382.875000,310.750000) \
, (379.750000,314.750000) \
, (374.125000,319.875000) \
, (,) \
, (408.500000,316.250000) \
, (406.875000,317.000000) \
, (404.625000,317.625000) \
, (401.375000,318.125000) \
, (398.250000,317.375000) \
, (395.875000,316.250000) \
, (395.000000,314.000000) \
, (395.875000,309.500000) \
, (398.625000,303.000000) \
, (402.625000,297.875000) \
, (407.125000,296.000000) \
, (412.250000,296.125000) \
, (417.250000,299.000000) \
, (421.250000,304.000000) \
, (422.625000,309.000000) \
, (420.750000,313.750000) \
, (416.125000,317.500000) \
, (410.625000,320.125000) \
, (405.750000,321.625000) \
, (,) \
, (438.375000,313.375000) \
, (434.750000,312.000000) \
, (431.250000,310.625000) \
, (429.375000,308.375000) \
, (429.375000,305.625000) \
, (431.500000,300.750000) \
, (435.375000,296.250000) \
, (439.625000,294.375000) \
, (443.500000,294.750000) \
, (446.625000,296.625000) \
, (448.625000,299.625000) \
, (448.375000,302.625000) \
, (445.500000,305.750000) \
, (439.875000,308.750000) \
, (431.625000,312.000000) \
, (,) \
, (135.250000,344.625000) \
, (136.125000,341.750000) \
, (136.500000,342.000000) \
, (136.875000,343.500000) \
, (136.500000,347.000000) \
, (133.125000,357.000000) \
, (130.500000,361.500000) \
, (,) \
, (126.625000,364.375000) \
, (126.000000,364.750000) \
, (128.125000,365.250000) \
, (133.750000,364.500000) \
, (,) \
, (92.500000,420.750000) \
, (91.250000,421.000000) \
, (90.500000,420.875000) \
, (90.125000,420.125000) \
, (90.625000,416.750000) \
, (96.750000,404.000000) \
, (101.000000,397.500000) \
, (102.375000,397.500000) \
, (104.000000,399.125000) \
, (109.375000,411.250000) \
, (109.750000,412.500000) \
, (109.000000,413.750000) \
, (,) \
, (91.250000,415.625000) \
, (90.500000,414.250000) \
, (93.500000,413.125000) \
, (106.375000,409.750000) \
, (114.125000,408.500000) \
, (,) \
, (125.375000,396.375000) \
, (125.500000,395.250000) \
, (128.875000,393.000000) \
, (133.500000,390.375000) \
, (139.000000,388.000000) \
, (139.250000,387.875000) \
, (,) \
, (138.250000,388.375000) \
, (137.125000,389.750000) \
, (136.375000,391.375000) \
, (135.500000,404.625000) \
, (134.000000,408.625000) \
, (131.875000,411.500000) \
, (130.250000,411.875000) \
, (129.625000,411.125000) \
, (130.750000,409.750000) \
, (133.375000,408.125000) \
, (146.000000,402.375000) \
, (,) \
, (154.875000,391.000000) \
, (154.875000,390.375000) \
, (161.000000,393.875000) \
, (172.750000,397.125000) \
, (172.625000,396.625000) \
, (172.500000,393.625000) \
, (172.000000,390.625000) \
, (170.000000,389.500000) \
, (166.250000,390.375000) \
, (159.625000,395.500000) \
, (151.500000,405.500000) \
, (,) \
, (84.375000,264.000000) \
, (83.625000,263.875000) \
, (83.500000,264.000000) \
, (88.750000,268.500000) \
, (,) \
, (81.375000,280.750000) \
, (80.250000,280.250000) \
, (79.875000,280.125000) \
, (84.750000,275.250000) \
, (89.375000,272.250000) \
, (91.000000,271.875000) \
, (91.000000,273.250000) \
, (90.000000,275.500000) \
, (86.750000,281.750000) \
, (84.875000,284.875000) \
, (81.500000,289.125000) \
, (83.875000,286.000000) \
, (89.000000,282.000000) \
, (91.125000,281.750000) \
, (92.750000,282.250000) \
, (96.375000,286.625000) \
, (98.375000,287.125000) \
, (106.250000,284.375000) \
, (,) \
, (136.125000,404.625000) \
, (136.000000,403.875000) \
, (,) \
, (125.750000,260.625000) \
, (125.500000,260.250000) \
, (124.375000,261.250000) \
, (115.250000,273.625000) \
, (,) \
, (119.125000,268.375000) \
, (119.625000,267.875000) \
, (119.750000,267.875000) \
, (120.125000,268.250000) \
, (121.375000,269.500000) \
]
z_129 = [list(t) for t in zip(*xy_129)]; x_129 = z_129[0]; y_129 = z_129[1]
ax.scatter(x_129, y_129)
ax.plot(x_129, y_129)
ax.annotate('ID=129' \
, xy=(np.mean(x_129),np.mean(y_129)) \
, xytext=(np.mean(x_129)+ np.std(y_129), np.mean(y_129) + np.std(y_129)) \
, arrowprops=dict(arrowstyle="->"))
#----------------
plt.show()
A4 (210 × 297mm)あるいは少し大きめのレターサイズ(215.9 × 279.4ミリ)が一般的です。 2 カラムとすると 3.34645669291339インチ程度。 アスペクトを 4:3にすれば、2.9インチ×2.1インチぐらいの図が論文投稿の図として適切です。
サーバーサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 サーバーサイドでダイナミックに生成している画像なので、ダウンロードだけでなく、リンクもできます。
クライアントサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 クライアントサイドでダイナミックに生成している画像なので、ダウンロードはできますが、リンクはできません。
| xmin | 0 |
| xmax | 1000 |
| ymin | 0 |
| ymax | 1000 |
,[81.375000,347.875000 ],[84.125000,338.750000 ],[87.750000,323.750000 ],[91.875000,311.750000 ],[92.750000,311.750000 ],[94.750000,312.875000 ],[97.500000,316.875000 ],[99.250000,323.750000 ],[102.250000,340.500000 ],[102.250000,344.375000 ],[101.000000,345.250000 ],[ ],[93.000000,335.125000 ],[91.750000,334.500000 ],[94.250000,333.250000 ],[103.250000,330.000000 ],[ ],[118.500000,318.750000 ],[118.625000,317.625000 ],[121.125000,315.625000 ],[130.125000,310.500000 ],[130.125000,309.500000 ],[128.750000,309.000000 ],[127.625000,310.250000 ],[127.250000,312.625000 ],[127.500000,316.000000 ],[129.750000,326.375000 ],[130.250000,331.875000 ],[130.000000,335.875000 ],[129.000000,338.125000 ],[127.250000,339.125000 ],[124.875000,339.000000 ],[122.500000,337.875000 ],[120.250000,335.000000 ],[ ],[142.500000,312.500000 ],[150.625000,314.250000 ],[156.875000,315.750000 ],[166.750000,319.500000 ],[166.625000,318.750000 ],[ ],[165.125000,308.250000 ],[164.500000,307.000000 ],[163.500000,307.500000 ],[156.250000,320.500000 ],[154.500000,325.375000 ],[154.375000,329.750000 ],[ ],[180.250000,317.500000 ],[183.250000,317.750000 ],[ ],[221.625000,320.250000 ],[217.500000,316.875000 ],[215.250000,311.625000 ],[215.625000,306.750000 ],[218.625000,303.250000 ],[224.500000,299.750000 ],[231.125000,298.250000 ],[237.125000,299.625000 ],[240.500000,303.375000 ],[240.625000,307.625000 ],[238.125000,312.125000 ],[234.125000,316.375000 ],[229.625000,319.500000 ],[226.250000,320.875000 ],[225.000000,320.750000 ],[ ],[255.000000,314.750000 ],[251.375000,314.000000 ],[248.125000,312.750000 ],[246.000000,310.250000 ],[245.625000,306.750000 ],[247.125000,301.500000 ],[250.750000,296.125000 ],[255.375000,293.000000 ],[260.000000,292.375000 ],[264.875000,294.125000 ],[269.750000,299.125000 ],[272.500000,305.375000 ],[272.250000,312.250000 ],[269.375000,318.625000 ],[266.000000,323.250000 ],[262.625000,326.750000 ],[ ],[286.875000,325.625000 ],[283.625000,324.500000 ],[280.875000,322.750000 ],[279.250000,319.750000 ],[279.750000,315.125000 ],[281.875000,307.500000 ],[285.750000,299.250000 ],[290.750000,294.625000 ],[295.375000,293.250000 ],[299.250000,294.500000 ],[301.375000,298.125000 ],[301.000000,303.125000 ],[297.375000,308.375000 ],[287.500000,317.750000 ],[ ],[323.750000,311.875000 ],[321.375000,310.875000 ],[324.000000,309.750000 ],[329.750000,308.750000 ],[338.250000,308.125000 ],[ ],[371.000000,321.250000 ],[366.375000,319.375000 ],[363.625000,316.625000 ],[363.125000,312.000000 ],[364.750000,305.625000 ],[368.500000,300.375000 ],[373.125000,297.375000 ],[377.625000,296.500000 ],[381.125000,297.625000 ],[383.625000,300.875000 ],[384.375000,305.750000 ],[382.875000,310.750000 ],[379.750000,314.750000 ],[374.125000,319.875000 ],[ ],[408.500000,316.250000 ],[406.875000,317.000000 ],[404.625000,317.625000 ],[401.375000,318.125000 ],[398.250000,317.375000 ],[395.875000,316.250000 ],[395.000000,314.000000 ],[395.875000,309.500000 ],[398.625000,303.000000 ],[402.625000,297.875000 ],[407.125000,296.000000 ],[412.250000,296.125000 ],[417.250000,299.000000 ],[421.250000,304.000000 ],[422.625000,309.000000 ],[420.750000,313.750000 ],[416.125000,317.500000 ],[410.625000,320.125000 ],[405.750000,321.625000 ],[ ],[438.375000,313.375000 ],[434.750000,312.000000 ],[431.250000,310.625000 ],[429.375000,308.375000 ],[429.375000,305.625000 ],[431.500000,300.750000 ],[435.375000,296.250000 ],[439.625000,294.375000 ],[443.500000,294.750000 ],[446.625000,296.625000 ],[448.625000,299.625000 ],[448.375000,302.625000 ],[445.500000,305.750000 ],[439.875000,308.750000 ],[431.625000,312.000000 ],[ ],[135.250000,344.625000 ],[136.125000,341.750000 ],[136.500000,342.000000 ],[136.875000,343.500000 ],[136.500000,347.000000 ],[133.125000,357.000000 ],[130.500000,361.500000 ],[ ],[126.625000,364.375000 ],[126.000000,364.750000 ],[128.125000,365.250000 ],[133.750000,364.500000 ],[ ],[92.500000,420.750000 ],[91.250000,421.000000 ],[90.500000,420.875000 ],[90.125000,420.125000 ],[90.625000,416.750000 ],[96.750000,404.000000 ],[101.000000,397.500000 ],[102.375000,397.500000 ],[104.000000,399.125000 ],[109.375000,411.250000 ],[109.750000,412.500000 ],[109.000000,413.750000 ],[ ],[91.250000,415.625000 ],[90.500000,414.250000 ],[93.500000,413.125000 ],[106.375000,409.750000 ],[114.125000,408.500000 ],[ ],[125.375000,396.375000 ],[125.500000,395.250000 ],[128.875000,393.000000 ],[133.500000,390.375000 ],[139.000000,388.000000 ],[139.250000,387.875000 ],[ ],[138.250000,388.375000 ],[137.125000,389.750000 ],[136.375000,391.375000 ],[135.500000,404.625000 ],[134.000000,408.625000 ],[131.875000,411.500000 ],[130.250000,411.875000 ],[129.625000,411.125000 ],[130.750000,409.750000 ],[133.375000,408.125000 ],[146.000000,402.375000 ],[ ],[154.875000,391.000000 ],[154.875000,390.375000 ],[161.000000,393.875000 ],[172.750000,397.125000 ],[172.625000,396.625000 ],[172.500000,393.625000 ],[172.000000,390.625000 ],[170.000000,389.500000 ],[166.250000,390.375000 ],[159.625000,395.500000 ],[151.500000,405.500000 ],[ ],[84.375000,264.000000 ],[83.625000,263.875000 ],[83.500000,264.000000 ],[88.750000,268.500000 ],[ ],[81.375000,280.750000 ],[80.250000,280.250000 ],[79.875000,280.125000 ],[84.750000,275.250000 ],[89.375000,272.250000 ],[91.000000,271.875000 ],[91.000000,273.250000 ],[90.000000,275.500000 ],[86.750000,281.750000 ],[84.875000,284.875000 ],[81.500000,289.125000 ],[83.875000,286.000000 ],[89.000000,282.000000 ],[91.125000,281.750000 ],[92.750000,282.250000 ],[96.375000,286.625000 ],[98.375000,287.125000 ],[106.250000,284.375000 ],[ ],[136.125000,404.625000 ],[136.000000,403.875000 ],[ ],[125.750000,260.625000 ],[125.500000,260.250000 ],[124.375000,261.250000 ],[115.250000,273.625000 ],[ ],[119.125000,268.375000 ],[119.625000,267.875000 ],[119.750000,267.875000 ],[120.125000,268.250000 ],[121.375000,269.500000 ],[122.500000,269.750000 ],[125.625000,267.875000 ],[127.250000,265.875000 ],[123.625000,269.500000 ],[118.500000,274.250000 ],[121.500000,272.125000 ],[124.000000,270.375000 ],[126.875000,269.250000 ],[121.000000,276.250000 ],[124.125000,273.875000 ],[125.000000,274.000000 ],[125.125000,274.625000 ],[123.125000,277.000000 ],[119.125000,279.875000 ],[122.500000,277.750000 ],[123.000000,280.500000 ],[123.500000,281.250000 ],[124.875000,281.750000 ],[119.375000,284.875000 ],[121.500000,283.375000 ],[122.000000,283.500000 ],[122.750000,285.375000 ],[ ],[119.000000,296.375000 ],[117.625000,295.375000 ],[116.875000,295.250000 ],[ ],[112.000000,320.000000 ],[ ],[345.875000,223.500000 ],[334.250000,218.750000 ],[324.000000,212.125000 ],[315.375000,203.375000 ],[309.500000,190.625000 ],[307.750000,174.375000 ],[310.250000,157.875000 ],[318.250000,142.875000 ],[331.750000,130.000000 ],[350.375000,119.375000 ],[373.875000,110.750000 ],[401.000000,104.875000 ],[429.375000,102.375000 ],[456.250000,102.875000 ],[481.000000,105.500000 ],[503.375000,109.625000 ],[523.500000,115.375000 ],[539.250000,123.000000 ],[547.125000,130.500000 ],[549.375000,140.750000 ],[547.125000,153.625000 ],[539.875000,167.500000 ],[528.125000,182.000000 ],[513.250000,195.125000 ],[496.625000,205.375000 ],[478.000000,212.625000 ],[460.875000,216.625000 ],[443.000000,219.000000 ],[424.750000,220.250000 ],[405.125000,220.000000 ],[385.000000,217.875000 ],[364.875000,214.500000 ],[345.500000,209.750000 ],[330.500000,202.750000 ],[321.625000,194.375000 ],[316.500000,183.500000 ],[314.625000,169.875000 ],[317.875000,155.125000 ],[326.875000,140.500000 ],[342.625000,127.125000 ],[363.375000,116.250000 ],[387.250000,107.750000 ],[411.750000,101.625000 ],[437.500000,98.000000 ],[462.875000,97.875000 ],[486.125000,100.875000 ],[504.875000,106.250000 ],[518.875000,114.375000 ],[528.500000,124.875000 ],[533.375000,138.000000 ],[533.250000,153.500000 ],[527.875000,169.000000 ],[517.875000,183.125000 ],[504.125000,195.250000 ],[486.625000,204.375000 ],[465.500000,210.875000 ],[441.250000,214.250000 ],[413.125000,215.125000 ],[385.250000,215.000000 ],[352.875000,215.000000 ],[ ],[53.500000,70.875000 ],[50.750000,65.625000 ],[ ],[]
| 名称 | グラフ | 説明 |
|---|---|---|
| 指数関数 |
|
python
+
matplotlib
|
| 逆ネルンスト |
|
電池の充放電曲線で現れます。 |
| 確率曲線 |
|
|
| 正規分布関数 |
|
確率統計で多用されます。 品質管理 でも大切です。 |
| 数式 | 意味 | 説明 |
|---|---|---|
| 一次関数 直線 |
数に量の意味はありません。 変数 には、x,y,zのようにアルファベットの後ろの方を使い 定数には、a,b,cのようにアルファベットの前の方を使います。 デカルト座標系では、 図形を表します。 座標の数に量を割り当てたものをグラフやチャートと呼びます。 |
|
|
|
気体の状態方程式 1662~1802 | 左辺 pV が 仕事、 右辺nRTが熱量で、 エネルギー収支を表す量方程式です。 量方程式なので量を単位で割った数値を代入したり求めたりします。 |
|
|
ネルンストの式 1889 | |
|
|
ボルツマンの式 1877 |
数式には、インドアラビア数字、 ラテン文字、 ギリシャ文字、記号など多くの文字が現れます。 文字の多くは、数を表現します。量を数で表現している場合もあります。
数式は、量との量の関係を表現しているので、グラフにできます。
数式で数値を求めるときは、量を単位で割ってから代入します。このような数式を量方程式あるいは 量式*と言います。 単位が指定された数式を 数値方程式 と言います。単位の定義が変わると 数値方程式 の係数も変わります。 文献に記載された 数値方程式 を使う場合は、単位の定義がいつのものなのかを確認する必要があります。
コンピュータ上では直接数式を表現できないため、 TeXを使います。 MathMLを使います。
👨🏫 数式の表現、量の表現 👨🏫 ウルフラムアルファ(WolframAlpha) 👨🏫 計算式のページ(フォーム)動画、音声及び写真を含む図表等を転載する場合には転載許諾書による同意があった方が無難です。 動画、音声及び写真を含む図表等の転載許諾書