大学教育の質の保証・向上ならびに 電子化及びオープンアクセスの推進の観点から 学校教育法第百十三条に基づき、 教育研究活動の状況を公表しています。
第百十三条 大学は、教育研究の成果の普及及び活用の促進に資するため、その教育研究活動の状況を公表するものとする。
MnO2電解液無しセル組、伊藤 電極近傍の液晶状態が観察できるように スライドグラス、シャーレを使って三極式セルを組んだ。 作用極:銅 参照電極:亜鉛 対極:亜鉛 作用局の、電位測定したところ。0.9Vぐらいであった。 二酸化マンガン電極の電位を測定したところ1.2Vぐらいだった。 ⇒#4405@講義; -5.-50、-500マイクロアンペアで放電実験を行った。 ⇒#4404@講義;
【業績】伊藤知之、加…らは、2012年にコンダクトメトリーによる有機化合物の簡便迅速な半導体物性評価について報告し、コンダクトメトリーによる有機化合物の簡便迅速な半導体物性評価 著者:伊藤知之 (山形大 工)、加藤直貴 (山形大 工)、深瀬薫子 (山形大 工)・・・ 資料名:科学・技術研究 巻:1 号:…と述べている⇒#18241@業績;。 芳尾真幸、小沢昭弥, リチウムイオン二次電池-材料と応用-第二版, 日刊工業新聞社, , (1996). 【関連書籍】機能性電解液⇒#838@レビュー; 有機電解液は充放電に伴い、反応生成物が生じる。反応生成物は有機溶媒に起因するされる、有機溶媒と電解質塩に起因する生成物に分類される。これらは電極の表面に付着する。 【関連書籍】材料の劣化の評価:負極/電解液⇒#1499@レビュー;
粒径の違う導電性高分子・有機電解液の実験
C1ラボラトリー⇒#2@研究室;でよく使う有機電解液 1M TEMA・BF4/PC+DME(vol50:50)⇒#1276@材料; ホウフッ化テトラエチルアンモニウム/PC⇒#2981@材料; 1M LiBF4/PC+DME(1:1vol%)⇒#1280@材料; 1M LiPF6/PC+DME(1:1vol)⇒#1264@材料; (C2H5)4NBF4/PC⇒#8884@試料; (C2H5)4NBF4/PC⇒#8885@試料; 有機溶媒に溶解しやすいカチオンでフッ素を遊離する電解質を選びます。 電解液⇒#767@講義; ●過塩素酸リチウム⇒#111@ノート; ●イオン液体⇒#132@ノート; ●参考文献 有機電解液について。⇒#106@レビュー;
電極/電解液界面の劣化現象とそのメカニズム 劣化とは電池性能に影響を及ぼす不可逆現象である。電池性能は電圧、電流、電気量によって分類でき、不可逆現象は物理的変化と化学的変化に分類される。電池性能における電圧の代表的指標は起電力であり、電流の代表的指標は内部抵抗であり、電気量の代表的指標は電池容量である。物理的劣化は形状の寸法変化であり、化学的変化は組成の濃度変化である。これらの変化は温度、圧力のほか通電によって引き起こされる。 【表】電池の劣化要因⇒#25@表; 二次電池においては充電後に放電前の状態に復帰するのが理想である。しかしながら活物質の体積膨張収縮や活物質以外の副反応によって引き起こされる。 電極/電解液界面の劣化現象に限定すれば、電極から電解液に溶出する、電解液から電極に析出する副反応が不可逆的化学変化である。これらの反応には不可逆な寸法変化も伴う。 ではどの時点での電池の状態を初期状態と呼ぶか?実用的には厳密な定義がそれほど重要とは思われないから、とりあえずは初期充電が終わった時点を電池の初期状態としておこう。
仁科・立花研究室4年生 平成18年度卒業研究中間発表テーマ 2006/10/31(火) 『高分子ゲル電解質を用いた電気化学キャパシタの特性改善』 03512009 石神大介 『有機電解液を用いたニオブ材料の電解エッチング条件の検討』 03512041 後藤善仁 『ESRによるニオブアノード酸化皮膜の欠陥部定量分析』 03512047 齋藤歩美 『バインダー乾燥過程における電極表面の可視化』 03512089 長瀬智哉 『電気二重層キャパシタの電解液による接触抵抗の非可逆性』 03512095 西川幸秀 『鉛蓄電池充電回路におけるコッククロフトウォルトン回路の応用』 03517214 坂井陽介 【関連講義】卒業研究(C1-電気化学2004~),後期中間発表会⇒#510@講義;
アルミニウムのアノード酸化皮膜に関する研究⇒#55@プロジェクト;
「アルミニウムの表面酸化皮膜が有機電解液中でのアノード酸化に及ぼす効果」 リチウムイオン二次電池の正極集電体のアルミニウムは、非水溶媒中で、溶質のフッ化物イオンと反応して不働態化し、そのブレークダウン電圧は、通常の水溶液中とは異なる挙動を示す。本研究では、予め存在する表面酸化皮膜を水溶液中で予備アノード酸化することで制御し、それが非水溶媒中でのアノード酸化に どのような影響を及ぼすのか調べた。その結果、非水溶媒中でのアノード酸化によってフッ化皮膜が表面酸化皮膜の外層に成長し、表面酸化皮膜の存在によってブレークダウン電圧が高くなり、ブレークダウン後は、皮膜内層に存在する酸化物イオンが溶液側に拡散し、最終的に内層の酸化物イオンがフッ化物イオンに置換することがわかった。 ブレークダウン電圧⇒#317@物理量; 導電率⇒#93@物理量; 電位上昇速度⇒#393@物理量; ゆきひで⇒#395@卒論; (社)日本アルミニウム協会中長期委員会・研究助成⇒#34@プロジェクト;
【論文】集電体 約 松木健三、立…らは、1999年にLiMn2O4系に対する導電付与材、集電体&電解液の効果について報告し、リチウムイオン二次電池の正極活物質であるマンガン酸リチウム⇒#464@化学種;系の電池反応において導電付与材、集電体&電解液がどのような影響をおよぼすか検討した⇒#14@学会;。 【関連…と述べている⇒#12455@業績;。 【関連講義】 LiMn2O4系に対する導電付与材、集電体&電解液の効果(1999)⇒#2096@講義; 卒業研究(C1-電気化学2004~),集電体|電解液(界面)⇒#1222@講義; 卒業研究(C1-電気化学2004~),電池性能と合材スラリー⇒#2875@講義;
論文:有機電解液中におけるニオブのエクスパンドメタルの電解エッチング 立花、後藤⇒#375@卒論;、仁科、菅原 34. Electrolytic Etching of Niobium Expand Metal in Organic Electrolyte 共著 2007.1 ITE Letters on Batteries, New Technologies & Medicine 8(1): pp.- 有機電解液中でニオブのエクスパンドメタルの電解エッチングを試みた。 担当部分「実験と論文作成」 (Kazuhiro Tachibana, Yoshihito Goto, Tatuo Nishina and Michio Sugawara ) K. Tac…らは、2007年にElectrolytic Etching of Niobium Expand Metal in Organic Electrolyteについて報告し、有機電解液中でニオブのエクスパンドメタルの電解エッチングを試みた。 後藤 善仁は、2007年に、それまでの研究を有機電解液を用いたニオブ材料の電解エッチング条件の検討というテーマで卒業論…と述べている⇒#17731@業績;。 ニオブ…は、ニオブ⇒#259@化学種;⇒#273@レビュー;は超伝導セラミックの材料としてばかりでなくニオブ固体電解コンデンサ⇒#1066@講義;に使います。 2Nb+5H2O<->Nb2O5+10…ことが知られている⇒#812@講義;。 【論文】カドミウム修飾チタニアのヒドロロキシルラジカル発生の光触媒活性⇒#680@ノート;
【論文】松木健三、立…らは、1999年にLiMn2O4系に対する導電付与材、集電体&電解液の効果について報告し、リチウムイオン二次電池の正極活物質であるマンガン酸リチウム⇒#464@化学種;系の電池反応において導電付与材、集電体&電解液がどのような影響をおよぼすか検討した⇒#14@学会;。 【関連…と述べている⇒#12455@業績;。 【関連講義】卒業研究(C1-電気化学2004~),【1999年度(平成11)卒業研究】⇒#808@講義;
●化学と工業 ⇒#1287@出版物; 化学と工業⇒#18@山形大文献; ●化学と教育⇒#585@ノート; http://www.chemistry.or.jp/gakujutu/chem-edu/index.html 日本化学会⇒#584@ノート; http://www.chemistry.or.jp/ ●表面技術協会⇒#241@ノート; 表面技術 電気化学 ジャーナルオブパワーソース ITEレターズ⇒#1115@ノート; 【論文】有機電解液中の水分がニオブアノード酸化皮膜の絶縁性に与える効果⇒#609@ノート; ●化学 化学同人 http://www.kagakudojin.co.jp/ 雑誌会2001(ゆきひろ)⇒#290@ノート;
【学会】第36回セミコンファレンス@山形県山形市⇒#172@ノート; 2004年12月⇒#898@講義; NEC筑波見学? 冬至 仁科・立花研究室でよく使う有機電解液⇒#272@ノート; 電解液の劣化について。 【先月】2004年11月⇒#784@ノート; http://www.labs.nec.co.jp/Overview/award/awardback2000.html
自動車用リチウムイオン二次電池における新規材料の開発および安全性・信頼性向上 主催:技術情報協会 日時:2007/06/28 会場:中央大学駿河台記念館 〒101-8324東京都千代田区神田駿河台3-11-5 TEL 03-3292-3111(記念館事務室) 安全性・信頼性向上のための電極/電解液界面の設計・制御と劣化機構解析 (10:00~11:30) §Ⅰ リチウムイオン二次電池用セパレーターの特性と開発動向 (12:10~13:10) §Ⅱ 高出力・長寿命リチウムイオン電池用負極の開発 (13:20~14:50) ~燃料電池自動車、ハイブリッド電気自動車適用に向けた~ (15:00~16:30) §Ⅲ 全固体リチウムイオン二次電池用無機固体電解質とその特性 (15:00~16:30) §Ⅳ 安全性・信頼性向上のための電極/電解液界面の設計・制御と劣化機構解析 (16:40~18:10) §Ⅳ スバルにおける電気自動車開発の取り組みについて http://www.gijutu.co.jp/ http://www.gijutu.co.jp/doc/s_706465.htm リチウムイオン二次電池における電極/電解液界面⇒#1116@講義; 電池電極の構成要素⇒#1206@講義; 2007年6月⇒#752@ノート;
【論文】こづか; 6. Y. Kozuka, et al., “Effect of Electrolyte Specific Gravity on the Capacity Lifetime of Lead-acid Batteries with ITE’s Organic Polymer Activator for Electric Bike Use”, ITE Letters, 8, No.6, 667-673(2007). 【雑誌】ITE LETTERS⇒#956@ノート;
有機電解液中の水分は電池やキャパシタの性能に影響します。 XPS:水分量が増えるとピークが低エネルギー側へシフトした。
有機電解液中の水分がニオブアノード酸化皮膜の絶縁性に与える効果 31. Effect of Water Content on Insulating Property of Niobium Anodic Oxide Film in Organic Electrolyte 共著 2006.X ITE Letters on Batteries, New Technologies & Medicine(with News) (in press.) ニオブのアノード酸化皮膜にあたえる水分の影響を検討した。 担当部分「実験と論文作成」 よしき⇒#265@卒論; (Yoshiki Tanaka, Kazuhiro Tachibana, Takashi Endo, Tatsuo Nishina, and Tateaki Ogata ) 結果と成果⇒#477@講義; 【論文】中川:鉛蓄電池の添加剤⇒#672@ノート;
アルミニウム集電体への炭素の塗布条件の違いが内部抵抗に及ぼす影響 かずみは、2006年に、それまでの研究をリチウムイオン二次電池の急速充放電化と高容量密度化というテーマで修士論文としてまとめ、山形大学を卒業した⇒#277@卒論;。 目的 溶液抵抗を分離することで、接触抵抗のみを求める。 また、炭素の塗布条件を変えることで、接触抵抗にどのような違いが見られるか検討する。 実験方法 1. 東洋アルミのサンプル(以下Al/Al4C3で示す)で、電解液の濃度を変えて、CV測定を行い、溶液抵抗を求める。 2. Al/Al4C3に、UFCを1.0mg塗布し、CV測定。 UFC(超微粒炭素分散液,水にアセチレンブラックを分散させたもの) 有機電解液には、1M (C2H5)4NBF4/PC(キシダ化学)を用いた。有機電解液は水分濃度を50ppm以下に保った。電解液の調整にはPCを用いた。対極としてPt、参照極にAg擬似参照電極(+3.0V vs. Li/Li+)を用いた。セルの組み立てはAr置換グローブボックス中で行い、電気化学測定は気密セルを用いて行った。電気化学測定としてサイクリックボルタンメトリー(CV)を採用し、掃引速度は0.5V/sで行った。 また、抵抗率の測定も行った。 CVの結果から、シミュレーションによって静電容量と等価直列抵抗を求めた。 結果 まず、Al/ABとAl/Al4C3とAl/Al4C3/ABの比較を行った。 Table.1から分かるように、Al/AB よりもAl/Al4C3/ABのほうが、等価直列抵抗が小さくなる。 Table.1 1M(C2H5)4NBF4における静電容量と等価直列抵抗 サンプル名 Al /AB Al /Al4C3 Al /Al4C3 /AB 1 静電容量[F] 0.0015 0.00035 0.0020 直列等価抵抗[Ω] 100 270 90 2 静電容量[F] 0.0018 0.00034 0.0014 直列等価抵抗[Ω] 100 310 90 3 静電容量[F] 0.0020 0.00037 直列等価抵抗[Ω] 120 270 4 静電容量[F] 0.00037 直列等価抵抗[Ω] 290
ゴム電極を使ったリチウムイオン二次電池。2003年ごろ⇒#476@講義;から開発を開始しました。 従来の正極合材の製造プロセスは電池活物質と導電助剤とバインダー⇒#26@試料;により結着させアルミ表面上に塗布していたが、集電体と正極合材の剥離による容量の劣化や、接触抵抗などの問題点がある。そこでバインダーの代わりにゴムを用い、そのゴムに活物質、導電助剤、を練りこんで用いたリチウムイオン二次電池を作製した。本実験は有機電解液を使用し、蓄電性ゴムの電池特性と電池用電極としての作動を検討した。 活物質を小さくした。粒度分布を測定予定。活性炭を利用したゴムシートの作成と評価。 株式会社フコク http://www.fukoku-rubber.co.jp/ 中国に工場見学に行きました。⇒#350@講義; 電池討論会で発表⇒#173@学会;⇒#194@学会;⇒#199@学会;,蓄電性ゴムを,第47回電池⇒#211@学会; おおき⇒#367@卒論;星野大助⇒#364@卒論;まみねえ⇒#210@卒論;
リチウムイオン二次電池用有機電解液中の水分濃度はアルミニウムを腐食させたり不働態化を促進したりする。 有機電解液として1M LiBF4/PC+DME(1:1vol%)⇒#1280@材料;を使って水分濃度があがるとアノード酸化の電位上昇曲線の傾斜がゆるやかになり、耐電圧が上昇してゆく。 熱処理についても調べてます⇒#70@学会;。 藤原徹学会発表平成12年度⇒#63@学会; ※⇒#126@ノート;
にらさわくん⇒#180@卒論;の結果ではタンタルの表面にぴらぴらができた。 久保くん⇒#260@卒論;の結果では、タンタル⇒#7544@試料;を過塩素酸リチウム/PC+DME⇒#3@試料;⇒#7546@試料;で強引に電流を流して分極したらピラピラはできなかったが、なんかが糸のように流れ落ちていった。にらさわくんの実験結果とのすりあわせを行う。電解液の酸化分解について検討中。ESR信号を確認!⇒#59@ノート;
リチウムイオン二次電池の正極集電体にはアルミニウムが使われます⇒#147@ノート;。 有機電解液中のアルミ、ニオブ、タンタルについてサイクリックボルタモグラムを測定しました⇒ニオブ@卒研;⇒#176@卒論;。
大学教育の質の保証・向上ならびに 電子化及びオープンアクセスの推進の観点から 学校教育法第百十三条に基づき、 教育研究活動の状況を公表しています。
第百十三条 大学は、教育研究の成果の普及及び活用の促進に資するため、その教育研究活動の状況を公表するものとする。