大学教育の質の保証・向上ならびに 電子化及びオープンアクセスの推進の観点から 学校教育法第百十三条に基づき、 教育研究活動の状況を公表しています。
第百十三条 大学は、教育研究の成果の普及及び活用の促進に資するため、その教育研究活動の状況を公表するものとする。
⇒#4857@講義; コメリ まないたスタンド めだまクリップ セロテープ かな電極 ステンレス缶 ⇒#1374@消耗品; ⇒#1375@消耗品; ⇒#1376@消耗品; ⇒#1377@消耗品; ⇒14302@試料; ⇒#14301@試料;
正極材、有機活物質、導電助剤、カーボンナノチューブ
本田千秋,武…らは、2011年に朱鷺メッセ(新潟市) で開催された2011年電気化学秋季大会において導電助材の混練による正極活物質の結晶構造変化と電池性能について報告している⇒#292@学会;。 電気化学の庵,新潟県⇒#789@講義; http://www.electrochem.jp/program/2011fall/2011fall.html 日時:9月9日(金)~11日(日)の2日半(11日は午前中のみの予定) 場所:朱鷺メッセ・新潟コンベンションセンター、ホテル日航新潟(新潟市万代島) 講演申込締切 6月7日(火)必着 講演要旨原稿締切 7月22日(金)必着 【関連講義】卒業研究(C1-電気化学2004~),学会発表2011@C1⇒#3571@講義;
典型的な電池正極活物質
ゴム電極を使ったリチウムイオン二次電池。2003年ごろ⇒#476@講義;から開発を開始しました。 従来の正極合材の製造プロセスは電池活物質と導電助剤とバインダー⇒#26@試料;により結着させアルミ表面上に塗布していたが、集電体と正極合材の剥離による容量の劣化や、接触抵抗などの問題点がある。そこでバインダーの代わりにゴムを用い、そのゴムに活物質、導電助剤、を練りこんで用いたリチウムイオン二次電池を作製した。本実験は有機電解液を使用し、蓄電性ゴムの電池特性と電池用電極としての作動を検討した。 活物質を小さくした。粒度分布を測定予定。活性炭を利用したゴムシートの作成と評価。 株式会社フコク http://www.fukoku-rubber.co.jp/ 中国に工場見学に行きました。⇒#350@講義; 電池討論会で発表⇒#173@学会;⇒#194@学会;⇒#199@学会;,蓄電性ゴムを,第47回電池⇒#211@学会; おおき⇒#367@卒論;星野大助⇒#364@卒論;まみねえ⇒#210@卒論;
クエン酸錯体法では高速充放電可能な活物質が合成できます⇒#114@学会;。 ●学会発表⇒クエン酸錯体法@卒論; まさのり⇒#164@卒論;が高速掃引を試みました。 はらくんがにっこの研究⇒#184@卒論;を発展させてニッケル混ぜたら4.8V!⇒#189@学会;となることを発見しました⇒#259@卒論; ●学会発表⇒クエン酸錯体法@学会; 今年の電池討論会で原啓⇒#189@学会;は5V級活物質(LiNiMnO)のレート特性がLiMn2O4より小さいことを発見、焼成温度を800から700に下げるとレート特性が改善されることを見出した。 溶媒がきくかな。 Cレートに⇒温度@物理;依存性あり。 指数的なとこみると反応抵抗⇒#14855@業績;か? JST説明会で説明⇒#40@講演;。 直接合成した電極は硝酸マンガン、硝酸リチウム、クエン酸をMn:Li:クエン酸のモル比が2:1:2になるように採取し、これらの少量の蒸留水を加えて前駆体水溶液とした。この前駆体水溶液に集電体となる金ワイヤ(0.3mmφ)⇒#7610@試料;を浸漬し、ロータリーエバポレータ(ヤマト科学(株) RE-50)⇒#251@装置;でアスピレータ減圧加熱(55℃、20分)して水分を蒸発し、前駆体高粘性液体を集電体に付着させた。これを真空乾燥(70℃、4h)して高粘性液体を吸湿性粉末とした。最後に吸湿性粉末が付着した集電体を空気中30秒間マッフル炉にて仮焼したのち、管状電気炉で空気中(800℃、2h)で焼成して、ごく微量のLiMn2O4がまばらに付着した集電体を得た。サイクリックボルタモグラム(以下CVと略す)を測定する有機電解液として、1M LiBF4/PC+DME(1:1vol%)⇒#1280@材料;、(キシダ化学) を用いた。参照極にはリチウム⇒#249@材料;を用いた。電解液中の水分濃度はカールフィッシャー水分計(平沼自動水分測定装置AQV-200)により50ppm以下であることを確認した。
活物質粒度の影響 ◆1997(平成9)年度研究ノート⇒#221@ノート; 1997/11/11 正極に LiMn2O4 を用いたリチウム二次電池の充放電挙動-活物質粒度の影響- 第38回電池討論会 ちば⇒#4@卒論; 千葉祐毅 立花 和宏 尾形・仁科研究室(旧応用化学C1講座) Propozal for an accurate and rapid international electrochemical...(PART.3):The charging/discharging characteristics of LiMn2O4 as the cathode for Lithium secondary battery The effect of combination of current collector and electrolyte 知的財産 研究業績 研究助成 学会 立花 和宏 の 研究業績 ReaD -編集- 編集 著者 (Kazuhiro Tachibana, Tatsuo Nishina, Kenzo Matsuki and Akiya Kozawa) 仁科 辰夫 巻/号 17- V.17 N. 17() 発行所 Progress in Batteries & Battery Materials 発行年 (1998) 1998/1 1998.1 1998/1/1 ページ 256 -264 . pp. 256 -264 概要 リチウムイオン二次電池の正極集電体について検討し、アルミニウム集電体と過塩素酸リチウム、ステンレス集電体と六フッ化リン酸リチウムの電解質塩の組み合わせで電池寿命が劣化することを見出した。 キーワード リチウムイオン二次電池;正極集電体;アルミニウム;過塩素酸リチウム;ステンレス;六フッ化リン酸リチウム;電解質;電池;寿命;劣化
活物質粒度のチェック 井上さんからデータをもらいました⇒#7@学会;。 1997/5/15 by 立花和宏
負極においてはLi電位における非還元性、正極では過充電などのトラブルで活性酸素が発生した場合の非酸化性が必要である。更にこの電池独特のインターカレーション動作に伴う活物質の膨張収縮(黒鉛の面間隔変化で10~11%)に対するクッション作用も求められる。リチウムイオン電池の製造はある意味では水との戦いであり、極板は乾燥工程の最後に完全な脱水乾燥を受けるが、この工程では最大200℃程度の加熱が必要であり、バインダーにもこのレベルの耐熱性は必須条件である。以上のような要求特性から、以下のようなポリマーが実際に使用、または検討されている。 1 PVDF/NMP(N-メチル-2-ピロリドン)その他溶剤系 2 接着性に優れた変性SBRラテックス 3 化学的安定性と耐熱性に優れたPTFE(ポリテトラフルオロエチレン)水分散体 4 ポリオレフィン類(PP、PE、共重合体) 5 ポリイミド
大学教育の質の保証・向上ならびに 電子化及びオープンアクセスの推進の観点から 学校教育法第百十三条に基づき、 教育研究活動の状況を公表しています。
第百十三条 大学は、教育研究の成果の普及及び活用の促進に資するため、その教育研究活動の状況を公表するものとする。