演算処理と数式処理~微分方程式はコンピュータで解こう~. 山形大学, 情報処理概論 講義ノート, 2014. https://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/@Lecture.asp?nLectureID=4219 , (参照 ).
Lambert-Beerの法則
吸光度1)と体積モル濃度2)、厚み3)の関係式。
コバルトブルー4)
【関連講義】
無機化学演習,錯体の異性と電子軌道5)
【関連講義】
機器分析化学Ⅱ,紫外可視分光法と蛍光分析法6)
【関連書籍】
錯体の色7)
入門分析化学(目次)8)
物理は自然を測る学問。物理を使えば、 いつでも、 どこでも、みんな同じように測れます。 その基本となるのが 量と 単位で、その比を数で表します。 量にならない 性状 も、序列で表すことができます。
物理量は単位の倍数であり、数値と 単位の積として表されます。
量と 量との関係は、 式で表すことができ、 数式で示されます。 単位が変わっても 量は変わりません。 自然科学では数式に 単位をつけません。 そのような数式では、数式の記号がそのまま物理量の記号を粟原素のでを量方程式と言います。
物理量 | 記号 | 数値 | 単位 | |
---|---|---|---|---|
真空の透磁率 | permeability of vacuum | μ 0 | 4π ×10-2 | NA-2 |
真空中の光速度 | speed of light in vacuum | c , c 0 | 299792458 | ms-1 |
真空の誘電率 | permittivity of vacuum | ε = 1/ μ 0 c 2 | 8.854187817...×10-12 | Fm-1 |
電気素量 | elementary charge | e | 1.602176634×10-19 | C |
プランク定数 | Planck constant | h | 6.62607015×10-34 | J·s |
ボルツマン定数 | Boltzmann constant | kB | 1.380649×10-23 | J·s |
アボガドロ定数 | Avogadro constant | NA | 6.02214086×1023 | mol−1 |
数式 | 意味 | 説明 |
---|---|---|
一次関数 直線 |
数に量の意味はありません。 変数 には、x,y,zのようにアルファベットの後ろの方を使い 定数には、a,b,cのようにアルファベットの前の方を使います。 デカルト座標系では、 図形を表します。 座標の数に量を割り当てたものをグラフやチャートと呼びます。 |
|
|
気体の状態方程式 1662~1802 | 左辺 pV が 仕事、 右辺nRTが熱量で、 エネルギー収支を表す量方程式です。 量方程式なので量を単位で割った数値を代入したり求めたりします。 |
|
ネルンストの式 1889 | |
|
ボルツマンの式 1877 |
数式には、インドアラビア数字、 ラテン文字、 ギリシャ文字、記号など多くの文字が現れます。 文字の多くは、数を表現します。量を数で表現している場合もあります。
数式は、量との量の関係を表現しているので、グラフにできます。
数式で数値を求めるときは、量を単位で割ってから代入します。このような数式を量方程式あるいは 量式*と言います。 単位が指定された数式を 数値方程式 と言います。単位の定義が変わると 数値方程式 の係数も変わります。 文献に記載された 数値方程式 を使う場合は、単位の定義がいつのものなのかを確認する必要があります。
コンピュータ上では直接数式を表現できないため、 TeXを使います。 MathMLを使います。
👨🏫 数式の表現、量の表現 👨🏫 ウルフラムアルファ(WolframAlpha)演算処理と数式処理~微分方程式はコンピュータで解こう~. 山形大学, 情報処理概論 講義ノート, 2014. https://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/@Lecture.asp?nLectureID=4219 , (参照 ).