大学教育の質の保証・向上ならびに 電子化及びオープンアクセスの推進の観点から 学校教育法第百十三条に基づき、 教育研究活動の状況を公表しています。
第百十三条 大学は、教育研究の成果の普及及び活用の促進に資するため、その教育研究活動の状況を公表するものとする。
ラジカルとトラップ剤(T;たとえばDMPO)と消去物質(S;たとえばSOD)に競争反応させたとき反応次数が異なるときの(I0/I)-1の関係は,どうなるかなぁ? 仮定反応式 R・ + T → T-R・ (反応速度定数: kT) R・ + nS → S-R・ (反応速度定数: kS) (I0/I)-1 = kS*[S]^n/(kT*[T]) かなぁー. ポイントは,[S]と[T]が常に一定でないと成立しなそうだなぁー(→定常状態法). (I0/I)-1 が1になるということ(Ic50)は, 反応速度をvT, vSとすると, vT = kT[R・][T] vS = kS[R・][S]^n のvT = vS が成立することになる. すなわち, kT[R・][T] = kS[R・][S]^n ゆえに,kT[T] = kS[S]^n で求めることができる. 【関連書籍】 スピントラッピング法による反応速度の解析について知りたいのですが?⇒#1460@レビュー; 【関連グラフ】 ピロガロールの濃度 vs DMPOとピロガロールのスーパーオキシドとの反応速度比⇒#1103@グラフ; ルチンの濃度 vs DMPOとルチンのスーパーオキシドとの反応速度比⇒#1107@グラフ; ミリセチンの濃度 vs DMPOとミリセチンのスーパーオキシドとの反応速度比⇒#1106@グラフ; カテコールの濃度 vs DMPOとカテコールのスーパーオキシドとの反応速度比⇒#1104@グラフ; カテキンの濃度 vs DMPOとカテキンのスーパーオキシドとの反応速度比⇒#1105@グラフ;
【反応式】DMPOとスーパーオキシドの反応⇒#538@反応; 小出智子は,1997年にスピントラップESR法による食品の活性酸素消去能評価に関する研究というタイトルの山形大学大学院理工学研究科物質工学専攻の修士論文を執筆しておりスーパーオキシドアニオンラジカル⇒#282@化学種;とDMPO⇒#2311@化学種;の反応速度定数をpH=5.0~9.0で求めている.⇒#1102@グラフ; Eli Finkelstらは1980年にSpin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitronesについてDMPOとOOH・の二次反応速度定数が述べられている.pH=7.8において,二次反応速度定数は,10 [/M/s]であると述べている.⇒#1830@出版物;
下記の反応が文献調査によってわかった. 【反応式】(NC(CH3)2CN)2<->2CN(CH3)2C+N2⇒#466@反応; 【反応式】DMPO+CN(CH3)2C・<->DMPO-C(CN)(CH3)2⇒#497@反応; 【反応式】CN(CH3)2C・+O2<->CN(CH3)2COO・⇒#469@反応; 【反応式】2ROO・ → 2RO・ + O2 (R=CN(CH3)2C) ⇒#527@反応; 【反応式】CN(CH3)2CO + C6H11NO → C10H17N2O2⇒#528@反応; 【関連文献】 ・The initiation properties of 2-cyano-2-propyl hydroperoxide in oxidation processes, Aleksandra Burghardt, Zdzis?aw Kulicki, monatshefte fur chemie / chemical monthly ,115,87(1984).⇒#1823@出版物; ・Detection of alkyl, alkoxyl, and alkyperoxyl radicals from the thermolysis of azobis(isobutyronitrile) by ESR/spin trapping. Evidence for double spin adducts from liquid-phase chromatography and mass spectroscopy,Edward G. Janzen , Peter H. Krygsman , David A. Lindsay , D. Larry Haire , j. am. chem. soc.,112,8279(1990).⇒#1827@出版物; 【関連ノート】 AIBN由来の発生したDMPOアダクトのまとめ⇒#1867@ノート;
アシンメトリックキャパシタについて。電気二重層キャパシタにレドックス反応を利用して容量を増加させる。 吉野彰らは2004年にハイブリッド(アシンメトリック)キャパシタについてハイブリッド電気自動車(HEV)に代表されるように、ここ数年の間に高パワー特性を有するエネルギーデバイスに対するニーズが非常に大きくなってきている。 負極にグラファイト、チタン酸リチウムと述べている⇒#1215@出版物;。
●Bコース演習日程 Bコース演習日程のお知らせがありました。 それに沿って、再度日程をお送りしますので、ご確認の上 授業をうっかり忘れることの無いよう、よろしくお願いします。 4月15日 (遠藤) 濃度 + 小テスト 4月19日 (水口) 有効数字 + 小テスト 4月22日 (伊藤) 酸化数の数え方 + 小テスト 4月26日 (鵜沼) 化合物命名法、化学反応式 + 小テスト 5月6日 (立花) 酸化還元反応 + 小テスト 5月10日 (尾形) 原子の構造と電子配置 + 小テスト 5月13日 (鵜沼) 試験 5月17日 (菅原) 試験問題の解説 試験が近づきましたら、先生方に問題作成をお願いしますので、 そのときにもよろしくお願いします。 【関連講義】卒業研究(C1-電気化学2004~),講義2004@C1⇒#2813@講義;
クエン酸錯体法では高速充放電可能な活物質が合成できます⇒#114@学会;。 ●学会発表⇒クエン酸錯体法@卒論; まさのり⇒#164@卒論;が高速掃引を試みました。 はらくんがにっこの研究⇒#184@卒論;を発展させてニッケル混ぜたら4.8V!⇒#189@学会;となることを発見しました⇒#259@卒論; ●学会発表⇒クエン酸錯体法@学会; 今年の電池討論会で原啓⇒#189@学会;は5V級活物質(LiNiMnO)のレート特性がLiMn2O4より小さいことを発見、焼成温度を800から700に下げるとレート特性が改善されることを見出した。 溶媒がきくかな。 Cレートに⇒温度@物理;依存性あり。 指数的なとこみると反応抵抗⇒#14855@業績;か? JST説明会で説明⇒#40@講演;。 直接合成した電極は硝酸マンガン、硝酸リチウム、クエン酸をMn:Li:クエン酸のモル比が2:1:2になるように採取し、これらの少量の蒸留水を加えて前駆体水溶液とした。この前駆体水溶液に集電体となる金ワイヤ(0.3mmφ)⇒#7610@試料;を浸漬し、ロータリーエバポレータ(ヤマト科学(株) RE-50)⇒#251@装置;でアスピレータ減圧加熱(55℃、20分)して水分を蒸発し、前駆体高粘性液体を集電体に付着させた。これを真空乾燥(70℃、4h)して高粘性液体を吸湿性粉末とした。最後に吸湿性粉末が付着した集電体を空気中30秒間マッフル炉にて仮焼したのち、管状電気炉で空気中(800℃、2h)で焼成して、ごく微量のLiMn2O4がまばらに付着した集電体を得た。サイクリックボルタモグラム(以下CVと略す)を測定する有機電解液として、1M LiBF4/PC+DME(1:1vol%)⇒#1280@材料;、(キシダ化学) を用いた。参照極にはリチウム⇒#249@材料;を用いた。電解液中の水分濃度はカールフィッシャー水分計(平沼自動水分測定装置AQV-200)により50ppm以下であることを確認した。
ウコギ葉の過酸化ラジカル消去能測定 H17年.6.1 【目的】 実験系を変え再度過酸化ラジカル消去能をESR測定し評価した。 【実験方法】 ウコギの葉に1,2,3分マイクロ波照射させ乳鉢で粉砕させ試料とした。試料を 0.1 g電子天秤で測り、リン酸緩衝溶液10 mlに入れる。マイクロテストチューブに2 ml取り、条件を20.0×1000 rpm、300秒間ホモジナイズする。さらに10×1000 rpmで円心分離器にかけ上澄み液を採取した。過酸化ラジカルを発生させ試料を入れESR測定した。 【結果と考察】 ESR測定した強度比を表に示した。コントロールの状態での強度比は0.55であるので全体的に過酸化ラジカル⇒#337@レビュー;を消去しているのがわかる。また、強度比が大きく変化していないのでマイクロ波を照射しても過酸化ラジカルを消す物質は減らないと言える。しかし、2min, 3minではかなりのばらつきがあるのがわかる。過酸化ラジカル発生量が一定ではないのが原因であると考えられる。次にその原因についてさらに実験した。予備実験として高温漕で温める時間を10分から18分までに伸ばしてESR測定した。その結果をグラフに示す。グラフから熱を加えただけラジカルが発生しているのがわかる。つまり、過酸化ラジカル濃度は加えるAIBNの濃度だけに依存しているわけではなく、加える熱量に依存しているのがわかった。これらのことをふまえて実験系を見直し精度を高めることにした。まず高温漕での暖め方を全体が温められるように工夫した。さらに高温漕から取り出す際に、瞬時に過酸化ラジカル発生反応を止めるように試験管を水道水で冷やすことにした。その結果コントロールの状態での信号強度比は0.56,0.55,0,54と安定に出るようになった。
毒性やアレルギー反応を示さず化学的に安定 生体組織適合性がよい。 発癌性、抗原性がない 血液凝固や要訣を起こさない 代謝異常を起こさない 生体内劣化、分解が起こらない。 抽出されない。 吸着物や沈殿物を生じない。 生体内の厳しい環境による酸化や加水分解などによる材料の劣化(バイオデテリオレーション) 繰り返し応力による材質の疲労、破損、表面の磨耗、腐食(溶解)などに対する組織の反応。 繰り返し荷重や衝撃荷重が作用するので腐食疲労や腐食クリープが通常の構造材料よりおこりやすい。 これらの予測はされていない。 力学的条件 静的郷土(引っ張り、圧縮、曲げ、せん断) 適当な弾性率と硬さ 耐疲労性 耐磨耗性 潤滑特性 ブラスト 被加工物表面に研削材あるいは研掃材を吹きつけあるいは叩き付けをおこなって清浄化あるいは粗面化することである。 物質透過性(酸素透過) 加工性 接着性 インプラント材料(金属、高分子、セラミックス)などがあります。 金属は強度と強靭性をかねそなえており人工骨や人工関節などに応用されています。 耐食性評価 耐久性(腐食疲労)評価 耐磨耗性評価 細胞適合性 微量元素分析 Vイオンの強い細胞毒性、Alイオンの神経毒性が懸念されている。 ステンレス合金(SUS316, SUS316L)など チタン合金(Ti, Zr, Sn, Nb, Ta) 骨と結合のゆるみ---多孔性金属 Co-Cr合金、チタン合金の粉末を焼結したり、 VMD(Void Metal Composite)法 プラズマスプレーにより表面を孔性にするものであり、 その空孔の中に骨を成長させ強固な結合を得ようとするものである。 約250ミクロン程度がよいとする報告もあるが、 それ以上細かい凹凸との慣例ああまり知られていない。 金属コンポーネントと骨を骨セメントなしで固定するために 金属表面にビーズを形成したり、ワイヤメッシュを加工したりと 骨の進入を助ける表面加工がいろいろ行われている。 多孔性コーティング チタンのプラズマスプレー アルミナのコーティング(アセチレン-酸素フレームスプレー法-溶射) 金属繊維コーティング バイオガラス、水酸アパタイトコーティング(HAPは穂手と化学的に結合
生体材料について 毒性やアレルギー反応を示さず化学的に安定 生体組織適合性がよい。 発癌性、抗原性がない 血液凝固や要訣を起こさない 代謝異常を起こさない 生体内劣化、分解が起こらない。 抽出されない。 吸着物や沈殿物を生じない。 生体内の厳しい環境による酸化や加水分解などによる材料の劣化(バイオデテリオレーション) 繰り返し応力による材質の疲労、破損、表面の磨耗、腐食(溶解)などに対する組織の反応。 繰り返し荷重や衝撃荷重が作用するので腐食疲労や腐食クリープが通常の構造材料よりおこりやすい。 これらの予測はされていない。 力学的条件 静的郷土(引っ張り、圧縮、曲げ、せん断) 適当な弾性率と硬さ 耐疲労性 耐磨耗性 潤滑特性 ブラスト 被加工物表面に研削材あるいは研掃材を吹きつけあるいは叩き付けをおこなって清浄化あるいは粗面化することである。 物質透過性(酸素透過) 加工性 接着性 インプラント材料(金属、高分子、セラミックス)などがあります。 金属は強度と強靭性をかねそなえており人工骨や人工関節などに応用されています。 耐食性評価 耐久性(腐食疲労)評価 耐磨耗性評価 細胞適合性 微量元素分析 Vイオンの強い細胞毒性、Alイオンの神経毒性が懸念されている。 ステンレス合金(SUS316, SUS316L)など チタン合金(Ti, Zr, Sn, Nb, Ta) 骨と結合のゆるみ---多孔性金属 Co-Cr合金、チタン合金の粉末を焼結したり、 VMD(Void Metal Composite)法 プラズマスプレーにより表面を孔性にするものであり、 その空孔の中に骨を成長させ強固な結合を得ようとするものである。 約250ミクロン程度がよいとする報告もあるが、 それ以上細かい凹凸との慣例ああまり知られていない。 金属コンポーネントと骨を骨セメントなしで固定するために 金属表面にビーズを形成したり、ワイヤメッシュを加工したりと 骨の進入を助ける表面加工がいろいろ行われている。 多孔性コーティング チタンのプラズマスプレー アルミナのコーティング(アセチレン-酸素フレームスプレー法-溶射) 金属繊維コーティング バイオガラス、水酸アパタイトコーティング(H
大学教育の質の保証・向上ならびに 電子化及びオープンアクセスの推進の観点から 学校教育法第百十三条に基づき、 教育研究活動の状況を公表しています。
第百十三条 大学は、教育研究の成果の普及及び活用の促進に資するため、その教育研究活動の状況を公表するものとする。