import numpy as np import matplotlib.pyplot as plt #fig, ax = plt.subplots(figsize=(2.9, 2.1)) fig, ax = plt.subplots() #---------------- #_📈_5_マンガン酸リチウムのX線回折 xy_5 = [(90,91) \ , (89.875,79) \ , (89.375,76) \ , (89.125,93) \ , (89,81) \ , (88.375,86) \ , (88.25,83) \ , (88.125,87) \ , (87.875,80) \ , (87.5,98) \ , (87.25,69) \ , (87,70) \ , (86.875,91) \ , (86.5,77) \ , (86.375,90) \ , (86.25,91) \ , (86.125,80) \ , (86,82) \ , (85.875,76) \ , (85.625,92) \ , (85.5,67) \ , (85.375,99) \ , (85.25,89) \ , (85.125,104) \ , (85,92) \ , (84.875,96) \ , (84.625,79) \ , (84.5,110) \ , (84.375,107) \ , (84.25,110) \ , (84.125,147) \ , (84,145) \ , (83.875,131) \ , (83.75,105) \ , (83.625,107) \ , (83.5,76) \ , (83.375,89) \ , (83,69) \ , (82.875,102) \ , (82.625,80) \ , (82.5,79) \ , (82.375,91) \ , (82.25,82) \ , (82.125,102) \ , (82,77) \ , (81.75,101) \ , (81.625,67) \ , (81.5,96) \ , (81.375,84) \ , (81.25,104) \ , (81.125,167) \ , (81,160) \ , (80.875,172) \ , (80.75,102) \ , (80.625,89) \ , (80.5,93) \ , (80.25,83) \ , (80.125,105) \ , (79.625,76) \ , (79.375,97) \ , (79,87) \ , (78.875,97) \ , (78.75,94) \ , (78.5,113) \ , (78.375,78) \ , (78.25,105) \ , (78.125,89) \ , (78,94) \ , (77.875,78) \ , (77.75,96) \ , (77.625,90) \ , (77.5,106) \ , (77.375,102) \ , (77,157) \ , (76.875,160) \ , (76.75,155) \ , (76.5,93) \ , (76.375,96) \ , (76.25,90) \ , (76,124) \ , (75.875,122) \ , (75.75,174) \ , (75.625,124) \ , (75.375,98) \ , (75.25,102) \ , (75,76) \ , (74.75,122) \ , (74.625,95) \ , (74.375,89) \ , (74.125,104) \ , (74,89) \ , (73.75,106) \ , (73.5,78) \ , (73.25,104) \ , (73.125,81) \ , (73,94) \ , (72.875,95) \ , (72.75,82) \ , (72.5,99) \ , (72.25,81) \ , (72,108) \ , (71.75,85) \ , (71.625,110) \ , (71.5,93) \ , (71.25,88) \ , (71,91) \ , (70.875,85) \ , (70.75,116) \ , (70.5,92) \ , (70.25,106) \ , (70.125,95) \ , (70,99) \ , (69.875,86) \ , (69.75,106) \ , (69.625,102) \ , (69.25,108) \ , (69.125,84) \ , (68.75,107) \ , (68.625,90) \ , (68.5,95) \ , (68.375,86) \ , (68.25,107) \ , (68,93) \ , (67.875,109) \ , (67.75,108) \ , (67.625,121) \ , (67.5,214) \ , (67.25,259) \ , (67.125,143) \ , (66.875,111) \ , (66.75,114) \ , (66.625,92) \ , (66.5,102) \ , (66.25,98) \ , (66.125,113) \ , (65.875,109) \ , (65.75,98) \ , (65.5,128) \ , (65.375,96) \ , (65.25,93) \ , (65.125,97) \ , (65,111) \ , (64.75,96) \ , (64.625,129) \ , (64.375,142) \ , (64.25,195) \ , (64,490) \ , (63.75,162) \ , (63.5,100) \ , (63.375,104) \ , (63.25,94) \ , (63.125,108) \ , (63,90) \ , (62.875,100) \ , (62.75,90) \ , (62.625,122) \ , (62.375,92) \ , (62,97) \ , (61.75,107) \ , (61.625,90) \ , (61.5,99) \ , (61.375,99) \ , (61.25,90) \ , (61.125,122) \ , (60.75,96) \ , (60.375,109) \ , (60,101) \ , (59.875,107) \ , (59.625,93) \ , (59.5,104) \ , (59.375,98) \ , (59.25,110) \ , (59.125,96) \ , (59,109) \ , (58.875,100) \ , (58.625,130) \ , (58.25,367) \ , (57.875,117) \ , (57.75,100) \ , (57.5,118) \ , (57.25,83) \ , (57,120) \ , (56.875,86) \ , (56.75,118) \ , (56.625,98) \ , (56.5,97) \ , (56.375,105) \ , (56.25,103) \ , (56.125,121) \ , (55.75,99) \ , (55.625,100) \ , (55.5,115) \ , (55.375,97) \ , (55.25,105) \ , (55.125,98) \ , (55,100) \ , (54.75,71) \ , (54.5,112) \ , (54.375,89) \ , (54.125,121) \ , (53.875,94) \ , (53.75,123) \ , (53.625,97) \ , (53.5,107) \ , (53.375,89) \ , (53.25,114) \ , (52.875,112) \ , (52.75,100) \ , (52.625,102) \ , (52.5,118) \ , (52.375,104) \ , (52.25,115) \ , (52.125,97) \ , (52,101) \ , (51.875,91) \ , (51.75,111) \ , (51.5,104) \ , (51.375,110) \ , (51,84) \ , (50.875,103) \ , (50.75,100) \ , (50.625,83) \ , (50.5,109) \ , (50.375,98) \ , (50.25,103) \ , (50.125,85) \ , (49.875,114) \ , (49.75,96) \ , (49.625,117) \ , (49.5,96) \ , (49.375,111) \ , (49.25,109) \ , (49.125,116) \ , (49,93) \ , (48.875,107) \ , (48.75,99) \ , (48.5,113) \ , (48.25,250) \ , (48.125,259) \ , (48,134) \ , (47.875,130) \ , (47.75,92) \ , (47.625,111) \ , (47.5,93) \ , (47.375,96) \ , (47.25,115) \ , (47,92) \ , (46.875,119) \ , (46.75,106) \ , (46.5,125) \ , (46.375,99) \ , (46.25,113) \ , (46,116) \ , (45.875,128) \ , (45.625,119) \ , (45.375,88) \ ] z_5 = [list(t) for t in zip(*xy_5)]; x_5 = z_5[0]; y_5 = z_5[1] ax.scatter(x_5, y_5) ax.plot(x_5, y_5) ax.annotate('ID=5' \ , xy=(np.mean(x_5),np.mean(y_5)) \ , xytext=(np.mean(x_5)+ np.std(y_5), np.mean(y_5) + np.std(y_5)) \ , arrowprops=dict(arrowstyle="->")) #---------------- plt.show()
A4 (210 × 297mm)あるいは少し大きめのレターサイズ(215.9 × 279.4ミリ)が一般的です。 2 カラムとすると 3.34645669291339インチ程度。 アスペクトを 4:3にすれば、2.9インチ×2.1インチぐらいの図が論文投稿の図として適切です。
サーバーサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 サーバーサイドでダイナミックに生成している画像なので、ダウンロードだけでなく、リンクもできます。
クライアントサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 クライアントサイドでダイナミックに生成している画像なので、ダウンロードはできますが、リンクはできません。
xmin | 0 |
xmax | 90 |
ymin | 0 |
ymax | 2500 |
,[90,91 ],[89.875,79 ],[89.375,76 ],[89.125,93 ],[89,81 ],[88.375,86 ],[88.25,83 ],[88.125,87 ],[87.875,80 ],[87.5,98 ],[87.25,69 ],[87,70 ],[86.875,91 ],[86.5,77 ],[86.375,90 ],[86.25,91 ],[86.125,80 ],[86,82 ],[85.875,76 ],[85.625,92 ],[85.5,67 ],[85.375,99 ],[85.25,89 ],[85.125,104 ],[85,92 ],[84.875,96 ],[84.625,79 ],[84.5,110 ],[84.375,107 ],[84.25,110 ],[84.125,147 ],[84,145 ],[83.875,131 ],[83.75,105 ],[83.625,107 ],[83.5,76 ],[83.375,89 ],[83,69 ],[82.875,102 ],[82.625,80 ],[82.5,79 ],[82.375,91 ],[82.25,82 ],[82.125,102 ],[82,77 ],[81.75,101 ],[81.625,67 ],[81.5,96 ],[81.375,84 ],[81.25,104 ],[81.125,167 ],[81,160 ],[80.875,172 ],[80.75,102 ],[80.625,89 ],[80.5,93 ],[80.25,83 ],[80.125,105 ],[79.625,76 ],[79.375,97 ],[79,87 ],[78.875,97 ],[78.75,94 ],[78.5,113 ],[78.375,78 ],[78.25,105 ],[78.125,89 ],[78,94 ],[77.875,78 ],[77.75,96 ],[77.625,90 ],[77.5,106 ],[77.375,102 ],[77,157 ],[76.875,160 ],[76.75,155 ],[76.5,93 ],[76.375,96 ],[76.25,90 ],[76,124 ],[75.875,122 ],[75.75,174 ],[75.625,124 ],[75.375,98 ],[75.25,102 ],[75,76 ],[74.75,122 ],[74.625,95 ],[74.375,89 ],[74.125,104 ],[74,89 ],[73.75,106 ],[73.5,78 ],[73.25,104 ],[73.125,81 ],[73,94 ],[72.875,95 ],[72.75,82 ],[72.5,99 ],[72.25,81 ],[72,108 ],[71.75,85 ],[71.625,110 ],[71.5,93 ],[71.25,88 ],[71,91 ],[70.875,85 ],[70.75,116 ],[70.5,92 ],[70.25,106 ],[70.125,95 ],[70,99 ],[69.875,86 ],[69.75,106 ],[69.625,102 ],[69.25,108 ],[69.125,84 ],[68.75,107 ],[68.625,90 ],[68.5,95 ],[68.375,86 ],[68.25,107 ],[68,93 ],[67.875,109 ],[67.75,108 ],[67.625,121 ],[67.5,214 ],[67.25,259 ],[67.125,143 ],[66.875,111 ],[66.75,114 ],[66.625,92 ],[66.5,102 ],[66.25,98 ],[66.125,113 ],[65.875,109 ],[65.75,98 ],[65.5,128 ],[65.375,96 ],[65.25,93 ],[65.125,97 ],[65,111 ],[64.75,96 ],[64.625,129 ],[64.375,142 ],[64.25,195 ],[64,490 ],[63.75,162 ],[63.5,100 ],[63.375,104 ],[63.25,94 ],[63.125,108 ],[63,90 ],[62.875,100 ],[62.75,90 ],[62.625,122 ],[62.375,92 ],[62,97 ],[61.75,107 ],[61.625,90 ],[61.5,99 ],[61.375,99 ],[61.25,90 ],[61.125,122 ],[60.75,96 ],[60.375,109 ],[60,101 ],[59.875,107 ],[59.625,93 ],[59.5,104 ],[59.375,98 ],[59.25,110 ],[59.125,96 ],[59,109 ],[58.875,100 ],[58.625,130 ],[58.25,367 ],[57.875,117 ],[57.75,100 ],[57.5,118 ],[57.25,83 ],[57,120 ],[56.875,86 ],[56.75,118 ],[56.625,98 ],[56.5,97 ],[56.375,105 ],[56.25,103 ],[56.125,121 ],[55.75,99 ],[55.625,100 ],[55.5,115 ],[55.375,97 ],[55.25,105 ],[55.125,98 ],[55,100 ],[54.75,71 ],[54.5,112 ],[54.375,89 ],[54.125,121 ],[53.875,94 ],[53.75,123 ],[53.625,97 ],[53.5,107 ],[53.375,89 ],[53.25,114 ],[52.875,112 ],[52.75,100 ],[52.625,102 ],[52.5,118 ],[52.375,104 ],[52.25,115 ],[52.125,97 ],[52,101 ],[51.875,91 ],[51.75,111 ],[51.5,104 ],[51.375,110 ],[51,84 ],[50.875,103 ],[50.75,100 ],[50.625,83 ],[50.5,109 ],[50.375,98 ],[50.25,103 ],[50.125,85 ],[49.875,114 ],[49.75,96 ],[49.625,117 ],[49.5,96 ],[49.375,111 ],[49.25,109 ],[49.125,116 ],[49,93 ],[48.875,107 ],[48.75,99 ],[48.5,113 ],[48.25,250 ],[48.125,259 ],[48,134 ],[47.875,130 ],[47.75,92 ],[47.625,111 ],[47.5,93 ],[47.375,96 ],[47.25,115 ],[47,92 ],[46.875,119 ],[46.75,106 ],[46.5,125 ],[46.375,99 ],[46.25,113 ],[46,116 ],[45.875,128 ],[45.625,119 ],[45.375,88 ],[45.25,112 ],[45.125,109 ],[44.875,116 ],[44.625,153 ],[44.5,147 ],[44.375,169 ],[44.25,267 ],[44,1034 ],[43.75,217 ],[43.5,130 ],[43.375,134 ],[43.125,126 ],[43,156 ],[42.625,115 ],[42.5,131 ],[42.375,126 ],[42,134 ],[41.75,130 ],[41.625,115 ],[41.25,131 ],[41.125,154 ],[41,135 ],[40.875,151 ],[40.75,152 ],[40.5,131 ],[40.375,130 ],[40.25,133 ],[40.125,160 ],[40,130 ],[39.875,127 ],[39.75,150 ],[39.625,152 ],[39.5,119 ],[39.375,143 ],[39.125,158 ],[38.875,148 ],[38.75,134 ],[38.5,154 ],[38.375,121 ],[38,190 ],[37.875,324 ],[37.625,146 ],[37.5,178 ],[37.25,136 ],[37.125,155 ],[37,148 ],[36.875,157 ],[36.625,157 ],[36.375,350 ],[36.25,953 ],[36.125,930 ],[36,262 ],[35.625,141 ],[35.5,155 ],[35.375,136 ],[35.25,152 ],[35.125,128 ],[34.875,153 ],[34.625,142 ],[34.5,125 ],[34.375,141 ],[34.25,143 ],[34,124 ],[33.875,151 ],[33.75,120 ],[33.625,150 ],[33.375,142 ],[33.25,144 ],[33.125,163 ],[33,142 ],[32.875,172 ],[32.75,137 ],[32.625,150 ],[32.25,134 ],[32.125,120 ],[32,146 ],[31.875,139 ],[31.625,143 ],[31.5,140 ],[31.25,150 ],[31.125,119 ],[30.875,174 ],[30.75,142 ],[30.5,144 ],[30.375,125 ],[30.25,144 ],[30.125,146 ],[29.875,134 ],[29.625,155 ],[29.375,136 ],[29.25,146 ],[29.125,114 ],[28.75,147 ],[28.5,121 ],[28.375,155 ],[28.25,136 ],[28,161 ],[27.75,140 ],[27.625,158 ],[27.375,135 ],[27.25,140 ],[27.125,128 ],[27,133 ],[26.875,123 ],[26.75,123 ],[26.625,145 ],[26.5,128 ],[26.125,160 ],[26,142 ],[25.75,134 ],[25.5,135 ],[25.375,109 ],[25.25,150 ],[25.125,129 ],[24.75,124 ],[24.625,130 ],[24.375,118 ],[24.25,118 ],[24.125,142 ],[24,146 ],[23.875,128 ],[23.625,135 ],[23.375,109 ],[23.125,156 ],[23,133 ],[22.875,144 ],[22.625,148 ],[22.5,139 ],[22.375,154 ],[22.25,128 ],[22.125,145 ],[22,127 ],[21.875,152 ],[21.75,135 ],[21.625,131 ],[21.5,140 ],[21.375,129 ],[21.25,131 ],[21.125,126 ],[21,126 ],[20.75,141 ],[20.625,131 ],[20.5,140 ],[20.375,113 ],[20.125,139 ],[19.875,123 ],[19.75,132 ],[19.375,120 ],[19,157 ],[18.875,286 ],[18.625,2129 ],[18.5,574 ],[18.375,305 ],[18.125,136 ],[18,157 ],[17.875,158 ],[17.625,145 ],[17.5,151 ],[17.375,121 ],[17.25,154 ],[17,112 ],[16.75,146 ],[16.625,136 ],[16.5,151 ],[16.375,133 ],[16.25,153 ],[16.125,151 ],[16,116 ],[15.75,144 ],[15.625,127 ],[15.375,162 ],[15,142 ],[14.75,145 ],[14.625,152 ],[14.5,142 ],[14.375,146 ],[14.125,129 ],[13.875,152 ],[13.625,130 ],[13.5,127 ],[13.375,134 ],[13.25,111 ],[13.125,143 ],[13,146 ],[12.875,137 ],[12.75,147 ],[12.625,132 ],[12.5,139 ],[12.375,114 ],[12.125,148 ],[12,119 ],[11.875,144 ],[11.625,127 ],[11.375,148 ],[11.25,129 ],[11,117 ],[10.875,126 ],[10.75,122 ],[10.625,137 ],[10.375,138 ],[10.25,150 ],[10.125,129]
名称 | グラフ | 説明 |
---|---|---|
指数関数 |
python
+matplotlib
import numpy as np import math import matplotlib.pyplot as plt xy = [(p, math.exp(p)) for p in \ np.arange(start = - 2, stop = 2, step = 0.1)] z = [list(t) for t in zip(*xy)]; x = z[0]; y = z[1] fig, ax = plt.subplots() ax.plot(x, y) plt.show() |
|
逆ネルンスト | 電池の充放電曲線で現れます。 | |
確率曲線 | ||
正規分布関数 | 確率統計で多用されます。 品質管理 でも大切です。 |
動画、音声及び写真を含む図表等を転載する場合には転載許諾書による同意があった方が無難です。 動画、音声及び写真を含む図表等の転載許諾書