🏠
令和6年11月23日 (土)
⇒#5@グラフ;

📈 マンガン酸リチウムのX線回折

5_マンガン酸リチウムのX線回折
👨‍🏫 0
import numpy as np
import matplotlib.pyplot as plt

#fig, ax = plt.subplots(figsize=(2.9, 2.1)) 
fig, ax = plt.subplots()

#----------------
#_📈_5_マンガン酸リチウムのX線回折
xy_5 = [(90,91) \
, (89.875,79) \
, (89.375,76) \
, (89.125,93) \
, (89,81) \
, (88.375,86) \
, (88.25,83) \
, (88.125,87) \
, (87.875,80) \
, (87.5,98) \
, (87.25,69) \
, (87,70) \
, (86.875,91) \
, (86.5,77) \
, (86.375,90) \
, (86.25,91) \
, (86.125,80) \
, (86,82) \
, (85.875,76) \
, (85.625,92) \
, (85.5,67) \
, (85.375,99) \
, (85.25,89) \
, (85.125,104) \
, (85,92) \
, (84.875,96) \
, (84.625,79) \
, (84.5,110) \
, (84.375,107) \
, (84.25,110) \
, (84.125,147) \
, (84,145) \
, (83.875,131) \
, (83.75,105) \
, (83.625,107) \
, (83.5,76) \
, (83.375,89) \
, (83,69) \
, (82.875,102) \
, (82.625,80) \
, (82.5,79) \
, (82.375,91) \
, (82.25,82) \
, (82.125,102) \
, (82,77) \
, (81.75,101) \
, (81.625,67) \
, (81.5,96) \
, (81.375,84) \
, (81.25,104) \
, (81.125,167) \
, (81,160) \
, (80.875,172) \
, (80.75,102) \
, (80.625,89) \
, (80.5,93) \
, (80.25,83) \
, (80.125,105) \
, (79.625,76) \
, (79.375,97) \
, (79,87) \
, (78.875,97) \
, (78.75,94) \
, (78.5,113) \
, (78.375,78) \
, (78.25,105) \
, (78.125,89) \
, (78,94) \
, (77.875,78) \
, (77.75,96) \
, (77.625,90) \
, (77.5,106) \
, (77.375,102) \
, (77,157) \
, (76.875,160) \
, (76.75,155) \
, (76.5,93) \
, (76.375,96) \
, (76.25,90) \
, (76,124) \
, (75.875,122) \
, (75.75,174) \
, (75.625,124) \
, (75.375,98) \
, (75.25,102) \
, (75,76) \
, (74.75,122) \
, (74.625,95) \
, (74.375,89) \
, (74.125,104) \
, (74,89) \
, (73.75,106) \
, (73.5,78) \
, (73.25,104) \
, (73.125,81) \
, (73,94) \
, (72.875,95) \
, (72.75,82) \
, (72.5,99) \
, (72.25,81) \
, (72,108) \
, (71.75,85) \
, (71.625,110) \
, (71.5,93) \
, (71.25,88) \
, (71,91) \
, (70.875,85) \
, (70.75,116) \
, (70.5,92) \
, (70.25,106) \
, (70.125,95) \
, (70,99) \
, (69.875,86) \
, (69.75,106) \
, (69.625,102) \
, (69.25,108) \
, (69.125,84) \
, (68.75,107) \
, (68.625,90) \
, (68.5,95) \
, (68.375,86) \
, (68.25,107) \
, (68,93) \
, (67.875,109) \
, (67.75,108) \
, (67.625,121) \
, (67.5,214) \
, (67.25,259) \
, (67.125,143) \
, (66.875,111) \
, (66.75,114) \
, (66.625,92) \
, (66.5,102) \
, (66.25,98) \
, (66.125,113) \
, (65.875,109) \
, (65.75,98) \
, (65.5,128) \
, (65.375,96) \
, (65.25,93) \
, (65.125,97) \
, (65,111) \
, (64.75,96) \
, (64.625,129) \
, (64.375,142) \
, (64.25,195) \
, (64,490) \
, (63.75,162) \
, (63.5,100) \
, (63.375,104) \
, (63.25,94) \
, (63.125,108) \
, (63,90) \
, (62.875,100) \
, (62.75,90) \
, (62.625,122) \
, (62.375,92) \
, (62,97) \
, (61.75,107) \
, (61.625,90) \
, (61.5,99) \
, (61.375,99) \
, (61.25,90) \
, (61.125,122) \
, (60.75,96) \
, (60.375,109) \
, (60,101) \
, (59.875,107) \
, (59.625,93) \
, (59.5,104) \
, (59.375,98) \
, (59.25,110) \
, (59.125,96) \
, (59,109) \
, (58.875,100) \
, (58.625,130) \
, (58.25,367) \
, (57.875,117) \
, (57.75,100) \
, (57.5,118) \
, (57.25,83) \
, (57,120) \
, (56.875,86) \
, (56.75,118) \
, (56.625,98) \
, (56.5,97) \
, (56.375,105) \
, (56.25,103) \
, (56.125,121) \
, (55.75,99) \
, (55.625,100) \
, (55.5,115) \
, (55.375,97) \
, (55.25,105) \
, (55.125,98) \
, (55,100) \
, (54.75,71) \
, (54.5,112) \
, (54.375,89) \
, (54.125,121) \
, (53.875,94) \
, (53.75,123) \
, (53.625,97) \
, (53.5,107) \
, (53.375,89) \
, (53.25,114) \
, (52.875,112) \
, (52.75,100) \
, (52.625,102) \
, (52.5,118) \
, (52.375,104) \
, (52.25,115) \
, (52.125,97) \
, (52,101) \
, (51.875,91) \
, (51.75,111) \
, (51.5,104) \
, (51.375,110) \
, (51,84) \
, (50.875,103) \
, (50.75,100) \
, (50.625,83) \
, (50.5,109) \
, (50.375,98) \
, (50.25,103) \
, (50.125,85) \
, (49.875,114) \
, (49.75,96) \
, (49.625,117) \
, (49.5,96) \
, (49.375,111) \
, (49.25,109) \
, (49.125,116) \
, (49,93) \
, (48.875,107) \
, (48.75,99) \
, (48.5,113) \
, (48.25,250) \
, (48.125,259) \
, (48,134) \
, (47.875,130) \
, (47.75,92) \
, (47.625,111) \
, (47.5,93) \
, (47.375,96) \
, (47.25,115) \
, (47,92) \
, (46.875,119) \
, (46.75,106) \
, (46.5,125) \
, (46.375,99) \
, (46.25,113) \
, (46,116) \
, (45.875,128) \
, (45.625,119) \
, (45.375,88) \
]
z_5 = [list(t) for t in zip(*xy_5)]; x_5 = z_5[0]; y_5 = z_5[1]

ax.scatter(x_5, y_5)
ax.plot(x_5, y_5)
ax.annotate('ID=5' \
, xy=(np.mean(x_5),np.mean(y_5)) \
, xytext=(np.mean(x_5)+ np.std(y_5), np.mean(y_5) + np.std(y_5)) \
, arrowprops=dict(arrowstyle="->"))
#----------------

plt.show()
  1 python コード

A4 (210 × 297mm)あるいは少し大きめのレターサイズ(215.9 × 279.4ミリ)が一般的です。 2 カラムとすると 3.34645669291339インチ程度。 アスペクトを 4:3にすれば、2.9インチ×2.1インチぐらいの図が論文投稿の図として適切です。


サーバーサイドスクリプト

  2 マンガン酸リチウムのX線回折

サーバーサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 サーバーサイドでダイナミックに生成している画像なので、ダウンロードだけでなく、リンクもできます。


クライアントサイドスクリプト

  3 canvas マンガン酸リチウムのX線回折

クライアントサイドでラスタライズ(bmp,jpg,png)しているので、レスポンシブな表示が可能です。 クライアントサイドでダイナミックに生成している画像なので、ダウンロードはできますが、リンクはできません。


  4 google chart APIを使った描画

  5 マンガン酸リチウムのX線回折

xmin0
xmax90
ymin0
ymax2500
90,91 89.875,79 89.375,76 89.125,93 89,81 88.375,86 88.25,83 88.125,87 87.875,80 87.5,98 87.25,69 87,70 86.875,91 86.5,77 86.375,90 86.25,91 86.125,80 86,82 85.875,76 85.625,92 85.5,67 85.375,99 85.25,89 85.125,104 85,92 84.875,96 84.625,79 84.5,110 84.375,107 84.25,110 84.125,147 84,145 83.875,131 83.75,105 83.625,107 83.5,76 83.375,89 83,69 82.875,102 82.625,80 82.5,79 82.375,91 82.25,82 82.125,102 82,77 81.75,101 81.625,67 81.5,96 81.375,84 81.25,104 81.125,167 81,160 80.875,172 80.75,102 80.625,89 80.5,93 80.25,83 80.125,105 79.625,76 79.375,97 79,87 78.875,97 78.75,94 78.5,113 78.375,78 78.25,105 78.125,89 78,94 77.875,78 77.75,96 77.625,90 77.5,106 77.375,102 77,157 76.875,160 76.75,155 76.5,93 76.375,96 76.25,90 76,124 75.875,122 75.75,174 75.625,124 75.375,98 75.25,102 75,76 74.75,122 74.625,95 74.375,89 74.125,104 74,89 73.75,106 73.5,78 73.25,104 73.125,81 73,94 72.875,95 72.75,82 72.5,99 72.25,81 72,108 71.75,85 71.625,110 71.5,93 71.25,88 71,91 70.875,85 70.75,116 70.5,92 70.25,106 70.125,95 70,99 69.875,86 69.75,106 69.625,102 69.25,108 69.125,84 68.75,107 68.625,90 68.5,95 68.375,86 68.25,107 68,93 67.875,109 67.75,108 67.625,121 67.5,214 67.25,259 67.125,143 66.875,111 66.75,114 66.625,92 66.5,102 66.25,98 66.125,113 65.875,109 65.75,98 65.5,128 65.375,96 65.25,93 65.125,97 65,111 64.75,96 64.625,129 64.375,142 64.25,195 64,490 63.75,162 63.5,100 63.375,104 63.25,94 63.125,108 63,90 62.875,100 62.75,90 62.625,122 62.375,92 62,97 61.75,107 61.625,90 61.5,99 61.375,99 61.25,90 61.125,122 60.75,96 60.375,109 60,101 59.875,107 59.625,93 59.5,104 59.375,98 59.25,110 59.125,96 59,109 58.875,100 58.625,130 58.25,367 57.875,117 57.75,100 57.5,118 57.25,83 57,120 56.875,86 56.75,118 56.625,98 56.5,97 56.375,105 56.25,103 56.125,121 55.75,99 55.625,100 55.5,115 55.375,97 55.25,105 55.125,98 55,100 54.75,71 54.5,112 54.375,89 54.125,121 53.875,94 53.75,123 53.625,97 53.5,107 53.375,89 53.25,114 52.875,112 52.75,100 52.625,102 52.5,118 52.375,104 52.25,115 52.125,97 52,101 51.875,91 51.75,111 51.5,104 51.375,110 51,84 50.875,103 50.75,100 50.625,83 50.5,109 50.375,98 50.25,103 50.125,85 49.875,114 49.75,96 49.625,117 49.5,96 49.375,111 49.25,109 49.125,116 49,93 48.875,107 48.75,99 48.5,113 48.25,250 48.125,259 48,134 47.875,130 47.75,92 47.625,111 47.5,93 47.375,96 47.25,115 47,92 46.875,119 46.75,106 46.5,125 46.375,99 46.25,113 46,116 45.875,128 45.625,119 45.375,88 45.25,112 45.125,109 44.875,116 44.625,153 44.5,147 44.375,169 44.25,267 44,1034 43.75,217 43.5,130 43.375,134 43.125,126 43,156 42.625,115 42.5,131 42.375,126 42,134 41.75,130 41.625,115 41.25,131 41.125,154 41,135 40.875,151 40.75,152 40.5,131 40.375,130 40.25,133 40.125,160 40,130 39.875,127 39.75,150 39.625,152 39.5,119 39.375,143 39.125,158 38.875,148 38.75,134 38.5,154 38.375,121 38,190 37.875,324 37.625,146 37.5,178 37.25,136 37.125,155 37,148 36.875,157 36.625,157 36.375,350 36.25,953 36.125,930 36,262 35.625,141 35.5,155 35.375,136 35.25,152 35.125,128 34.875,153 34.625,142 34.5,125 34.375,141 34.25,143 34,124 33.875,151 33.75,120 33.625,150 33.375,142 33.25,144 33.125,163 33,142 32.875,172 32.75,137 32.625,150 32.25,134 32.125,120 32,146 31.875,139 31.625,143 31.5,140 31.25,150 31.125,119 30.875,174 30.75,142 30.5,144 30.375,125 30.25,144 30.125,146 29.875,134 29.625,155 29.375,136 29.25,146 29.125,114 28.75,147 28.5,121 28.375,155 28.25,136 28,161 27.75,140 27.625,158 27.375,135 27.25,140 27.125,128 27,133 26.875,123 26.75,123 26.625,145 26.5,128 26.125,160 26,142 25.75,134 25.5,135 25.375,109 25.25,150 25.125,129 24.75,124 24.625,130 24.375,118 24.25,118 24.125,142 24,146 23.875,128 23.625,135 23.375,109 23.125,156 23,133 22.875,144 22.625,148 22.5,139 22.375,154 22.25,128 22.125,145 22,127 21.875,152 21.75,135 21.625,131 21.5,140 21.375,129 21.25,131 21.125,126 21,126 20.75,141 20.625,131 20.5,140 20.375,113 20.125,139 19.875,123 19.75,132 19.375,120 19,157 18.875,286 18.625,2129 18.5,574 18.375,305 18.125,136 18,157 17.875,158 17.625,145 17.5,151 17.375,121 17.25,154 17,112 16.75,146 16.625,136 16.5,151 16.375,133 16.25,153 16.125,151 16,116 15.75,144 15.625,127 15.375,162 15,142 14.75,145 14.625,152 14.5,142 14.375,146 14.125,129 13.875,152 13.625,130 13.5,127 13.375,134 13.25,111 13.125,143 13,146 12.875,137 12.75,147 12.625,132 12.5,139 12.375,114 12.125,148 12,119 11.875,144 11.625,127 11.375,148 11.25,129 11,117 10.875,126 10.75,122 10.625,137 10.375,138 10.25,150 10.125,129

,[90,91 ],[89.875,79 ],[89.375,76 ],[89.125,93 ],[89,81 ],[88.375,86 ],[88.25,83 ],[88.125,87 ],[87.875,80 ],[87.5,98 ],[87.25,69 ],[87,70 ],[86.875,91 ],[86.5,77 ],[86.375,90 ],[86.25,91 ],[86.125,80 ],[86,82 ],[85.875,76 ],[85.625,92 ],[85.5,67 ],[85.375,99 ],[85.25,89 ],[85.125,104 ],[85,92 ],[84.875,96 ],[84.625,79 ],[84.5,110 ],[84.375,107 ],[84.25,110 ],[84.125,147 ],[84,145 ],[83.875,131 ],[83.75,105 ],[83.625,107 ],[83.5,76 ],[83.375,89 ],[83,69 ],[82.875,102 ],[82.625,80 ],[82.5,79 ],[82.375,91 ],[82.25,82 ],[82.125,102 ],[82,77 ],[81.75,101 ],[81.625,67 ],[81.5,96 ],[81.375,84 ],[81.25,104 ],[81.125,167 ],[81,160 ],[80.875,172 ],[80.75,102 ],[80.625,89 ],[80.5,93 ],[80.25,83 ],[80.125,105 ],[79.625,76 ],[79.375,97 ],[79,87 ],[78.875,97 ],[78.75,94 ],[78.5,113 ],[78.375,78 ],[78.25,105 ],[78.125,89 ],[78,94 ],[77.875,78 ],[77.75,96 ],[77.625,90 ],[77.5,106 ],[77.375,102 ],[77,157 ],[76.875,160 ],[76.75,155 ],[76.5,93 ],[76.375,96 ],[76.25,90 ],[76,124 ],[75.875,122 ],[75.75,174 ],[75.625,124 ],[75.375,98 ],[75.25,102 ],[75,76 ],[74.75,122 ],[74.625,95 ],[74.375,89 ],[74.125,104 ],[74,89 ],[73.75,106 ],[73.5,78 ],[73.25,104 ],[73.125,81 ],[73,94 ],[72.875,95 ],[72.75,82 ],[72.5,99 ],[72.25,81 ],[72,108 ],[71.75,85 ],[71.625,110 ],[71.5,93 ],[71.25,88 ],[71,91 ],[70.875,85 ],[70.75,116 ],[70.5,92 ],[70.25,106 ],[70.125,95 ],[70,99 ],[69.875,86 ],[69.75,106 ],[69.625,102 ],[69.25,108 ],[69.125,84 ],[68.75,107 ],[68.625,90 ],[68.5,95 ],[68.375,86 ],[68.25,107 ],[68,93 ],[67.875,109 ],[67.75,108 ],[67.625,121 ],[67.5,214 ],[67.25,259 ],[67.125,143 ],[66.875,111 ],[66.75,114 ],[66.625,92 ],[66.5,102 ],[66.25,98 ],[66.125,113 ],[65.875,109 ],[65.75,98 ],[65.5,128 ],[65.375,96 ],[65.25,93 ],[65.125,97 ],[65,111 ],[64.75,96 ],[64.625,129 ],[64.375,142 ],[64.25,195 ],[64,490 ],[63.75,162 ],[63.5,100 ],[63.375,104 ],[63.25,94 ],[63.125,108 ],[63,90 ],[62.875,100 ],[62.75,90 ],[62.625,122 ],[62.375,92 ],[62,97 ],[61.75,107 ],[61.625,90 ],[61.5,99 ],[61.375,99 ],[61.25,90 ],[61.125,122 ],[60.75,96 ],[60.375,109 ],[60,101 ],[59.875,107 ],[59.625,93 ],[59.5,104 ],[59.375,98 ],[59.25,110 ],[59.125,96 ],[59,109 ],[58.875,100 ],[58.625,130 ],[58.25,367 ],[57.875,117 ],[57.75,100 ],[57.5,118 ],[57.25,83 ],[57,120 ],[56.875,86 ],[56.75,118 ],[56.625,98 ],[56.5,97 ],[56.375,105 ],[56.25,103 ],[56.125,121 ],[55.75,99 ],[55.625,100 ],[55.5,115 ],[55.375,97 ],[55.25,105 ],[55.125,98 ],[55,100 ],[54.75,71 ],[54.5,112 ],[54.375,89 ],[54.125,121 ],[53.875,94 ],[53.75,123 ],[53.625,97 ],[53.5,107 ],[53.375,89 ],[53.25,114 ],[52.875,112 ],[52.75,100 ],[52.625,102 ],[52.5,118 ],[52.375,104 ],[52.25,115 ],[52.125,97 ],[52,101 ],[51.875,91 ],[51.75,111 ],[51.5,104 ],[51.375,110 ],[51,84 ],[50.875,103 ],[50.75,100 ],[50.625,83 ],[50.5,109 ],[50.375,98 ],[50.25,103 ],[50.125,85 ],[49.875,114 ],[49.75,96 ],[49.625,117 ],[49.5,96 ],[49.375,111 ],[49.25,109 ],[49.125,116 ],[49,93 ],[48.875,107 ],[48.75,99 ],[48.5,113 ],[48.25,250 ],[48.125,259 ],[48,134 ],[47.875,130 ],[47.75,92 ],[47.625,111 ],[47.5,93 ],[47.375,96 ],[47.25,115 ],[47,92 ],[46.875,119 ],[46.75,106 ],[46.5,125 ],[46.375,99 ],[46.25,113 ],[46,116 ],[45.875,128 ],[45.625,119 ],[45.375,88 ],[45.25,112 ],[45.125,109 ],[44.875,116 ],[44.625,153 ],[44.5,147 ],[44.375,169 ],[44.25,267 ],[44,1034 ],[43.75,217 ],[43.5,130 ],[43.375,134 ],[43.125,126 ],[43,156 ],[42.625,115 ],[42.5,131 ],[42.375,126 ],[42,134 ],[41.75,130 ],[41.625,115 ],[41.25,131 ],[41.125,154 ],[41,135 ],[40.875,151 ],[40.75,152 ],[40.5,131 ],[40.375,130 ],[40.25,133 ],[40.125,160 ],[40,130 ],[39.875,127 ],[39.75,150 ],[39.625,152 ],[39.5,119 ],[39.375,143 ],[39.125,158 ],[38.875,148 ],[38.75,134 ],[38.5,154 ],[38.375,121 ],[38,190 ],[37.875,324 ],[37.625,146 ],[37.5,178 ],[37.25,136 ],[37.125,155 ],[37,148 ],[36.875,157 ],[36.625,157 ],[36.375,350 ],[36.25,953 ],[36.125,930 ],[36,262 ],[35.625,141 ],[35.5,155 ],[35.375,136 ],[35.25,152 ],[35.125,128 ],[34.875,153 ],[34.625,142 ],[34.5,125 ],[34.375,141 ],[34.25,143 ],[34,124 ],[33.875,151 ],[33.75,120 ],[33.625,150 ],[33.375,142 ],[33.25,144 ],[33.125,163 ],[33,142 ],[32.875,172 ],[32.75,137 ],[32.625,150 ],[32.25,134 ],[32.125,120 ],[32,146 ],[31.875,139 ],[31.625,143 ],[31.5,140 ],[31.25,150 ],[31.125,119 ],[30.875,174 ],[30.75,142 ],[30.5,144 ],[30.375,125 ],[30.25,144 ],[30.125,146 ],[29.875,134 ],[29.625,155 ],[29.375,136 ],[29.25,146 ],[29.125,114 ],[28.75,147 ],[28.5,121 ],[28.375,155 ],[28.25,136 ],[28,161 ],[27.75,140 ],[27.625,158 ],[27.375,135 ],[27.25,140 ],[27.125,128 ],[27,133 ],[26.875,123 ],[26.75,123 ],[26.625,145 ],[26.5,128 ],[26.125,160 ],[26,142 ],[25.75,134 ],[25.5,135 ],[25.375,109 ],[25.25,150 ],[25.125,129 ],[24.75,124 ],[24.625,130 ],[24.375,118 ],[24.25,118 ],[24.125,142 ],[24,146 ],[23.875,128 ],[23.625,135 ],[23.375,109 ],[23.125,156 ],[23,133 ],[22.875,144 ],[22.625,148 ],[22.5,139 ],[22.375,154 ],[22.25,128 ],[22.125,145 ],[22,127 ],[21.875,152 ],[21.75,135 ],[21.625,131 ],[21.5,140 ],[21.375,129 ],[21.25,131 ],[21.125,126 ],[21,126 ],[20.75,141 ],[20.625,131 ],[20.5,140 ],[20.375,113 ],[20.125,139 ],[19.875,123 ],[19.75,132 ],[19.375,120 ],[19,157 ],[18.875,286 ],[18.625,2129 ],[18.5,574 ],[18.375,305 ],[18.125,136 ],[18,157 ],[17.875,158 ],[17.625,145 ],[17.5,151 ],[17.375,121 ],[17.25,154 ],[17,112 ],[16.75,146 ],[16.625,136 ],[16.5,151 ],[16.375,133 ],[16.25,153 ],[16.125,151 ],[16,116 ],[15.75,144 ],[15.625,127 ],[15.375,162 ],[15,142 ],[14.75,145 ],[14.625,152 ],[14.5,142 ],[14.375,146 ],[14.125,129 ],[13.875,152 ],[13.625,130 ],[13.5,127 ],[13.375,134 ],[13.25,111 ],[13.125,143 ],[13,146 ],[12.875,137 ],[12.75,147 ],[12.625,132 ],[12.5,139 ],[12.375,114 ],[12.125,148 ],[12,119 ],[11.875,144 ],[11.625,127 ],[11.375,148 ],[11.25,129 ],[11,117 ],[10.875,126 ],[10.75,122 ],[10.625,137 ],[10.375,138 ],[10.25,150 ],[10.125,129]

図形と関数

  1 図形と関数
名称 グラフ 説明
指数関数
python +matplotlib
import numpy as np
import math
import matplotlib.pyplot as plt

xy = [(p, math.exp(p)) for p in \
      np.arange(start = - 2, stop = 2, step = 0.1)]
z = [list(t) for t in zip(*xy)]; x = z[0]; y = z[1]

fig, ax = plt.subplots()
ax.plot(x, y)

plt.show()
逆ネルンスト 電池の充放電曲線で現れます。
確率曲線
正規分布関数 確率統計で多用されます。 品質管理 でも大切です。

<!-- 図図図図図 図図図図図 -->
<figure>
<img src="https://a.yamagata-u.ac.jp/amenity/Laboratory/xyGraphImage.aspx?id=5" />
<figcaption>
<a href="https://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Laboratory/Plot/Plot_Index.asp">Fig</a> <a href="https://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Laboratory/Plot/@Plot.asp?nxyGraphID=5"> マンガン酸リチウムのX線回折 </a>
<div> </div>
</figcaption>
</figure>
<!-- 図図図図図 図図図図図 -->

動画、音声及び写真を含む図表等を転載する場合には転載許諾書による同意があった方が無難です。 動画、音声及び写真を含む図表等の転載許諾書


QRコード
https://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Laboratory/Plot/@Plot.asp?nxyGraphID=5
名称: 教育用公開ウェブサービス
URL: 🔗 https://edu.yz.yamagata-u.ac.jp/
管理運用 山形大学 学術情報基盤センター

🎄🎂🌃🕯🎉
名称: サイバーキャンパス「鷹山」
URL: 🔗 http://amenity.yz.yamagata-u.ac.jp/
管理運用 山形大学 データベースアメニティ研究会
〒992-8510 山形県米沢市城南4丁目3-16

Copyright ©1996- 2024 Databese Amenity Laboratory of Virtual Research Institute,  Yamagata University All Rights Reserved.